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‘Executive Summary i

]

Y Objectives ;
'This project proposes to fnvestigate the effectiveness of prototype and j
generalized geometric programming (GP) developments in the routine solution of
inequality constrained algebraic programs. The research seeks to elucidate

under what conditions which of the equivalent prototype GP problem forms: primal,

convexified primal, transformed primal, and, or transformed dual, as well as

their generalized GP analogous are best solved and under what conditions. More-
over, direct and sequential strategies will be examined to identify the most
efficient strategies for the solution of GGP's. The computational tests in the
study will be performed using the leading specialized GP and GGP codes as wel)
as a selection of general nonlinear programming codes. Statistical tests will
be employed to deduce suitable measures of prototype and generalized GP problem

difficulty. ’i( e o

“two test problems representing both engineering applications and artifictally

The research performed under this project is divided into two parts. Part I
involved the study of prototype GP problems. Part II concerned the study of
generalized GP problems.

In Part I fourteen test series involving ten codes or code variants were

carried out to solve the five equivalent posynomial GP problem formulations.
Four of the codes used were general NLP codes; six were specialized GP codes.
Codes were selected on the basis of previous comparative studies as well as

preliminary studies carried out as part of this project. A total of fourty-

constructed problems were assembled. Each test serjes involved solution of each

test problem from up to twenty randomly generated starting points. Starting

point replication was shown to be essential to producing statistically 1




. ‘i
Justifiable rankings. On the basis of statistical tests,.the convex primal
formulation was shown to be intrinsically easiest to solve for general problems.
The difference between the primal and convex primal formulations were found to
1ie mainly in scaling and function evaluation time. VYet these differences
typically led to differences in solution times by factors of two to ten or more.
In problems with special combinations of characteristics (low degree of diffi-
culty) and mostly tight constraint§; dual approaches can be competitive. A
general purpose GRG code applied to the convex primal was shown to be highly
competitive with the reputedly best specialized GP codes currently available.
The effectiveness of the highly regarded specialized codes GGP and GPKTC appear
largely to be due to the fact that these codes solve the convex primal formula-
tion. These results therefore do cast considerable doubts on the computational
significance of many years of research into prototype GP solution algorithms.
Finally, a correlation analysis was carried out to show that posynomial GP
problem difficulty as measured in solution time is best correlated to an expo-
nential of the number of variables in the formulation being solved and is pro-
portional to the total number of multi-term primal constraints.

In Part II of'this study, ten test series involving five codes were carried
out to solve four generalized GP problem formulations. Four of the codes used
were specialized GP codes, one code was a general NLP program. The latter was
the code proven most effective in Part I of this project. A total of twenty-
five test problems, again representing both engineering applications and artifi-
cfally constructed problems, was selected and both signomial and reversed
" posynomial.formulations developed. Each test series involved solution of each
test problem from up to twenty randomly generated starting points as in Part I.
On the basis of statistical tests the preferred solution approach was shown to

involve: use of the quotient form of the signomial functions; condensation

§
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of the denominators of the quotients using Duffin's geometric mean construction;
and solution of the condensed subproblems in their convexified subproblem form.
The code GGP which employed this strategy was shown to be most effective.
Direct GRG solution of the exponential form of the primal was shown to be next
best. On the basis of the Part I results, it is certain that use of the GRG
code with the above three part strategy will be competitive with GGP. A var-
1at10h of this strategy in which the condensed subproblems are solved in their
transformed dual form was shown to be effective for problems in which the degree
of freedom is much smaller than the number of primal variables. The use of
condensation and the quotient representation of signomial functions thus appears
to be the most computationally significant development arising from generalized
GP research, As in Part I a correlation analysis was performed to deduce a
measure of generalized GP problem difficulty. The number primal variables and
multi-term constraints were shown to be strongly exponenﬁially correlated.
Depending upon the primal form used, the solution time is strongly correlated
to the number of negative terms or the number of reversed constraints. It appears
that the number of multi-term constraints fs more significant than the division
between posynomial and signomial constraints.

In addition to thése GP oriented results, this project has developed sig-
nificant methodological advances in the field of numerical evaluation of NLP
software. Progress in the work of this project was reported at several symposia

including the COAL Sessions held at the Montreal Mathematical Programming Sym-

. posium. One paper has been published, one will appear in a special Mathematical

Programming Study, and a, third, is under review.




Part I. Posynomial Study
1. Introduction

Geometrfc Programming (GP) is a body of theoretical and algorithmic

results concerned with constrained optimization problems involving a class
of nonlinear algebraic functions [1]. Since the initial work of Zener some ;
16 years ago, GP has undergone considerable theoretical development, has |
experienced a proliferation of proposals for numerical solution algorithms, h

and has enjoyed considerable practical application. At the present time y

the field 1s undergoing a period of consolidation and thus a reappraisal

of the practical and computational significance of the developed theory
appeﬁrs to be appropriate.
This paper is the second of a series of studies on the computation-
al utility of GP formulations and developments. The overall goals of this
research are to determine:
1) whether the constructionsresulting from GP theory offers any
f” computational advantages over conventional NLP methodology
{1) which of the various equivalent GP problem formulations

are preferable and under what conditions

141) which GP algorithm/formulation combination is most likely
to be successful for a given problem
iv) whether a criteria can be defined by means of which GP
problem difficulty can be gauged.
While the overall scope of our research encompasses both prototype
and generalized GP, the present paper fis confined to the prototype problem.
By way of review for the novice in GP, in the next section we summarize

the five equivalent prototype GP problems formulations.
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2. Equivalent GP problem structures
2.1 The Primal Problem
The prototype geometric programming problem (P) is

Minimize: go(x)
Subject to: gk(x).g ] k =1,....K ;
x>0 xeE '

4"
where the posynomial functions gk(x) are defined as

T
- 7K N a
" I e 1ot
k = n=l

with specified positive coefficients Cy and specified real exponents

The term indices t are defined consecutively as

So = 1

.nto

Sey ® T
TK =T |
The above problem is in general a non-convex programming problem which
bec;use of the nonlinearities of the constraints can be expected to sev-
erely tax conventional nonlinear programming codes. However, despite the
apparent difficulty of the primal problem, there are structural features
of the generalized posynomial functions which can be exploited to facilitate
direct primal solutions.
2.2 The Convexified Primal Problem
An interesting property of the primal functions is that with the
change of variaole,
x =exp (2),n=1,,, N

n
they are transformed to convex functions. This underlying convexity of




i

the posynomial functions imp:ies that the primal problem is basically a
convex programming problem in the convex functions,

9, (2) = Zcy exp (ﬁ a2 )

This feature can be used to great advantage in computation since
it permits application of any of a number of convex programming algorithms.
Note that the variables in the convex form of the primal are unrestricted
in sign whereas the original primal variables must be positive.
2.3 The Transformed Primal Problem

The convexified primal can with a further change of variable,

y\'=ATg+1ng

be converted to a transformed primal auxiliary problem which has the

following revealing structure:

o "%
Minimize: go(¥9 = §=]e
T ’
k W _
t Subject to: gk(g) =7 e t<1 k"o I
. t-.-Sk
L(g - ln;e) =0

where the rows of the matrix L are any set of linearly independent vectors
spanning the null space of the exponent matrix A and where Ing = (1nc],
lncz.....,lnct). It is readily shown that this transformed primal is in
general a reduced equivalent and, if A has full rank, is exactly equivalent
to the primal problem [2,3]. Given a solution, g*. of TP a primal solution can
be recovered by solving the linear system,

X AR
for the transformed primal variables gf and simply exponentiating the result.




2.4 The Dual Problem

As shown by Duffin, et. al., [1], the primal GP problem has associated
with it a dual problem (D),

Maximize: v(Q) = : (ct/Gt)
t

Subject to:

-y

and where by definition

Tim (ctxk/Gt)ct =0
5,0

It is well known that at their respective optima, o and x*
v(g*) = g, (x*)

%
[
i
i
¢
,?
g

and that the primal and dual solutions are related by the following log-

linear equations which are defined for those t with 6; >0,

nfl a, 1nx; = In (%v(&*)/ct) T<t<T

s <teT

s* * m
In (Tt/en) m=l,e... M
It is further known that the logarithm of v(8) is a concave function
which is continuously differentiable over the positive orthant. Hence, the

dual problem with logarithmic objective function is a linearly constrained




concave program.
There are, however, three major complications associated with the
direct maximization of the dual:
1) The gradient of In{v(§)) is not defined when any dual variable
84=0.
2) If 6§ = 0 for some t, S, <t <T,, and k, 1 < k < K, then all
dual variables &%, associated with constraint k must equal zero.
3) It is possible that the system of log linear equations which

must be solved to determine the optimal primal variables may

lead to inaccurate solutions or that its rank may be less than N.
' The second of these difficulties can be mitigated if the definitions
4 of the variables Ak are explicitly incorporated as constraints into the

problem formulation and the Ak are explicitly treated as independent

variables. The first part of the third comp1ication can be avoided, as
poin;ed out by Dembo [5] , if the primal variables are recovered as Kuhn-
Tuckér multipliers of the dual constraints. If the rank is less than N,
a subsidiary maximation of the dual problem must be undertaken prior to the :
recovery of the primal solutions [4] . The problem of non-differentiability T
when Gt = 0 has to date been treated by either setting arbitrarily small i
Tower bounds 64 2 eor by introducing penalized slack variables 6] .
2.5 The Transformed Dual Problem |
An alternate way of formulating the dual program is to eliminate
the linear equality constraints by solving them.for the dual variables

in parametric form. Using this device the dual variable st can be

expressed as the sum of a particular solution and a linear combination

of T-N-1 homogeneous solutions of the N+1 dual constraints. Thus, all

feasible values of the dual variables will be given by the parametric




equations. T-N-1
= KO J
Gt bt + I bt yj
J=1

where Qo is any particular dual feasible solution and the Q? are any
basis of the solution space of the homogeneous form of the dual constraints.

In this manner, the following Transformed Dual Program can be constructed.

. -3 e
ximize: viy) = 1 ma
t=1 Sy¥) k=1 ¥
Subject to: o D .
8(y) =%+ x pd y; 20
j=1
where Th
A =L 8 (y)
t-Sk

and where the y;, j=1,.., D (=T-N-1) are unrestricted in sign.

The above is a maximization problem in D unrestricted variables
subject to T linear inequality constraints: The following properties of
th1§ problem are well known:

i) The logarithm of v(y) is a continuously differentiable concaye

function within the positive orthant.
ii) if all primal constraints are active at the optimum, then at
the corresponding dual optimum all T transformed dual inequality '
constraints will be inactive. Hence, the transformed dual will
take on an unconstrained maximum.

iii) 4f primal constraint k is inactive at the optimum, then Gt(y)=0.
t=Sk,..,Tk, and the corresponding transformed dual constraints
must be satisfied simultaneously as equalities.

While, from a computational point of view, the second is a very




desirable property, the third very definitely is not since it requires

implementation of forcing strategies to ensure that blocks of TD constraints
become tight simultaneously.
3. Scope of the Present Study

From the preceding review and from the summary given in Table 1,
it is evident that the various GP problem formulations differ in variable
dimensionality; in number, type, and functional form of their constraints, as
well as in the particular regularity conditions which must be satisfied.
Numerous algorithms have been reported in the GP literature for these
various f~-mulations exploiting their peculiarities. In the present work
we gathered experimental data on the performance of ten codes or code
variants in solving a battery of 42 test problems each solved from up
to 20 different starting points. Four previous comparative studies of
prototype GP solution approaches have been repprted in the literatqre. Two
of these, Rijckaert and Martens [7] and Dembo [5] primarily focused on
generalized GP's but did include prototype problems in their test slate.
The study by Dinkel, et. al. [8] was restricted to the examination of
alternative cutting plane methods used for the solution of the convex primal.
Sarma, et. al. [9], in what may be viewed as a pilot to the present work,
considered primal, dual, and transformed primal solution approaches and
attempted to draw conclusions about the preferred approach.

Rijckaert and Marten's tests were restricted to eight prototype
problems, used single starting points, and generally employed penalized
slack variables to avoid difficulties with 1oose constraints. The algorithms
tested included '

1) dual and transformed dual maximization approaches: convex simplex

method, successive LP solution, separable programming, gradient




projection, modified Newton solution of the transformed dual.
i1) various strategies for solving the Kuhn-Tucker optimality conditions
(in either primal or dual form) using Newton-Raphson methods
ii1) two convex primal solution algorithms, GPKTC and GGP

Although the test results were quite limited, the convex simplex
method adaptation due to Beck and Ecker [10] appeared to be the most
reliable, if not always the fastest, dual maximization approach; the convex
primal approach GPKTC appeared to be the best overall with GGP second.
Dembo [5] included six prototype problems in his testing but these six
were parameter variants of only three original problems. The codes tested
consisted of several good general NLP codes applied directly to the primal
as well as several specialized GP codes, including GGP and GPKTC but not
the Beck and Ecker program. The test problems were run by the code authors
on their own machines; using a single set of starting points; allowing
tuning of programs by the authors; but requirihg the solutions to meet fixed
toleranées. Solution times were compared using Colville standard times. For
the prototype problems, GGP and GPKTC gave the fastest times, often by
nearly a factor of two better than the best of the NLP times. However, the
validity of using Colville standardized times has since been seriously
questioned by Eason [11] who showed that standardized times for a given
program on different machines can differ by an order of magnitude.

Sarma, et. al. [9], solved 21 prototype problems using two variants of
the Beck and Ecker code, a penalty method specialized to the GP primal, a
code which solves the GP transformed primal (DAP), and GGP. One to three
starting points were used and solutions were timed to achieve a specified

constraint tolerance (.001) as well as a specified objective function




tolerance (within 1/4% of optimum value). The last three codes used

starting points generated by DAP but suitably transformed; while the

Beck and Ecker code was allowed to generate its own starting points.

The study indicated that the penalized slack variable device was generally
less effective than the block strategy used in the unmodified Beck and

Ecker code (MCS). The GGP code was often faster than DAP and significantly

faster than the direct primal approach. In retrospect

the experimental procedure in this study was lacking in three respects.
Code timing included starting point generation in the case of MCS and DAP
but not with the others; the constraint tolerance was the primary tolernace
parameter in two of the codes, hence, the objective function tolerance
could not be precisely controlled; and, run replication was too small.

In the present work we will attempt to rectify some of the experimeatal
inadequacies of the previous studies: a large number of problems will be
used; up to 20 replications using different st;rting points will be run;
appropriate statistical tests will be used for comparisons; results will
be obtained at several precise error levels; and code timing will be
controlled to exclude starting point generation and extraneous /0. In
addition, the experiments will be designed such that, at least for the various
primal formulations, formulation effects can be separated from algorithm
effects.

4, Experimental Procedure )
4.1 Test Codes

Ten codes or code variants form the basis of this study. The

first four are general purpose NLP codes which were selected on the

basis of an extensive evaluation of NLP codes carried out under another

project [12].
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1) OPT is a generalized reduced gradient code which employs the
Fletcher-Reeves direction updating formula. [13] It has proven to
be comparable to the code developed by Abadie and more robust
than the code developed by Lasdon.

11) MAYNE is a conventional interior penalty function method which
employs the DFP updating formula for the unconstrained search
phase. [14]

111) RALP is a linearization based algorithm which uses successive
linear programming subproblems supplemented with Newton type
iterations to maintain constraint feasibflity. [15]

iv) BIAS is an implementation of a variant of Hestenes' Method of
Multipliers developed by Schuldt [16, 17] to accomodate nonlinear
inequality constraints. Unconstrained optimization {s carried
out by means of the DFP algorithm.

On the basis of the studies reviewed in the previous sectfion, the
specfalized GP codes selected for use in the present work were: GGP,
GPKTC, DAP and MCS. In addition, a promising transformed dua)code not
appearing in these studies was also chosen in order to be able to generate
comparative data with that GP problem formulation [20], Finally, one general
purpose NLP code modified to accept the special features of the convex
brimal form was also included. Details of these codes follow:

1) BIAS-SV is a variant of the Method of Multipliers specialized

for the convexified GP primal. It employs a modified Newton
method for the unconstrained optimization phase since for the
convexified primal functions analytic second derivations are
readily calculatable. BIAS SV further exploits this property

by using a second derivative basedline search. [17]




T

the convexified primal by iterative solution of the Kuhn-Tucker opti-

1) GPKTC, a code developed by Martens and Rijckaert [18], solves

mality conditions for that problem. The iterations follow
essentially the Newton-Raphson algorithm.

111) G66P is a code developed by Dembo [19] which also solves the

convexified primal although the version used in this study does

et e b e e

not fully exploit the problem structure. The code is an implementation E
of Kelley's cutting place method, a venerable and well known convex

programming algorithm. i~ linear subproblems which arise in this

method are solved using the dual simplex method with provisions

for upper bounded variables.

fv) MCS is a GP specialization of the convex Simplex Method proposed by
Zangwill. Beck and Ecker revised the conventional direction
generation machinery to fnsure that all dual variables associated
with a given constraint reach zero simu]taneously. The code also

includes provisions for solving subsidiary maxmimization problems {f

difficulties in recovering primal solutions are encountered [10]

v) QUADGP is a specialized GP code developed by Bradley [20] which solves

the transformed dual as a series of quadratic programs. Dynamically
adjusted lower bounds in the dual variables are used to accomodate
the nondifferentiability of the objective function.
vi) DAP: The DAP code in an adaptation of the Differential Algorithm of
Beightler and Wilde. [2] This in turn, may be viewed as a generalized
, reduced gradient technique which varies one varfable at a time
¥ and uses an active constraint strategy to accomodate inequality
constraints.

| 4,2 Test Problems

0f the large number of application problems available in the 1iterature,




some 42 prototype GP problem. have been selected for use in this study.

About half of these problems arise from engineering applications, the
remainder are literature test problems. Problem references are given in

Appendix B.

The problems and their characteristic dimensions are summarized in
Table 2. From this table it is apparent that the test problems cover the
following wide range of problem dimensions: l

r-

2 < P~imal Variables 30

IA

8 :_Primal Terms < 197

1 < Number of Constraints < 73
3.3% < Exponent matrix density < 83%

The lower 1imit on density is not as low as might be desirable.
However, it should be noted that the lower 1imit of problem density is
limited by the number of primal variables. This comes about because the
sparsest possible problem involving N variables and T terms will be the one
fn which each term contains only a single variable (as, for example, in a
1inear programming problem). Thus the lower limit to the density of the
exponent matrix will be,

L S |
L LA

It would be desirable to include large and sparse GP problems in this
study. However, there are only one or two posynomial problems with more
than thirty varfables which have, to our knowledge, appeared in the literature.
Hence we have restricted our range of fnvestigation to problems with N 5_30
and % Density > 3.3%.
4.3 Starting Point Generation

One of the key elements in comparative numerical studies {is the

selection of starting points for each problem. In this study primal and




dual starting points for each ¢ )blem were generated randomly by sampling from
the surface of an N-dimensicnal sohere whose center is the actual optimal
solution to the problem. The choice of radius is arbitrary; in general, a
reasonably large value was selected so that generation of points close to the

optimum was avoided. The points generated were tested for feasibility and only

feasible points retained. Typically, two different radii were used and some

10 points retained for each radius and for each problem. In some cases the

,‘ feasible region was so tightly constrained that it was not possible to generate
multiple and sufficiently distinct starting points, even after thousands of '
trials. The same primal points suitably transformed were used in the convex
primal and transformed primal computations. A similar starting point proce-

dure generation was employed for dual and transformed dual starting points.

In this case, the sign unrestricted transformed dual variables were randomlj

sampled and the transformed dual constraints were checked for feasibility.
The need for multiple starting points cannot be overstated. As can

be seen from Table 3, the variation in solution times, obtained for problem

13 using OPT started from 10 different points, can be considerable. For

instance for primal solution the range of times is from 1.776 secs to 5.72
secs with a mean of 3.65 and standard deviation of 1.42. Similarly, for

| convex primal solution the range is from 0.83 to 1.1 secs with mean of 0.878
and standard deviation of 0.165.

Note that for a given starting point the ratio of primal to convex

primal solution times changes substantially. For instance, it is 1.8 for
starting point 5 and 8.3 for starting point 8. Yet these computation times
are obtained using the same code with identical termination parameters.

A similar although less pronounced variation can be noted when the OPT
convexified primal solution times are compared to those obtained with the

GGP program. The solution time ratio ranges from 0.53 for problem 8 to

1.0 for problem 10.
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These results indicate that code ranking based on performance with
a single starting point, as is commonly done in the literature, is a very
questionable procedure. If at all possible, a sufficiently large number of
points must be used so that reliable means and standard deviations can be !
computed. Comparisons must then be made via statistical tests such as
those of Student.

The obvious difficulty with multiple starting points is the tremendous *

increase in computational effort. The testing carried out in the present ;
report required some 10,000 separate test runs of which some 6,000 resulted
in useful data.

4.4 Test Procedure

To carry out code tests on this scale it is imperative that the assembly,
execution, and analysis of runs be automated as much as possible. In the present
study we found it convenient to prepare computer files of test problem
subroutines and test probiem starting points for each of the five GP problem
formulations. These files are accessed through an executive program which
calls the desired routines, retrieves the required starting point data, executes
the test run, and saves the intermediate and final results of each run 1n
appropriate result files. The result files are separately analyzed by a data
post-processing program which calculates the desired error functions, performs
error function interpolations, computes means and standard deviations for
each code-formulation-test problem combination at several error levels.

The primary error function used in this study is the pseudo-Lagrangian

function,

n * * n *
ABs [(9,°-g, ) + I ABS (g, - g, )]
* k [3
9% %
The starred quantities fn this expression are the known optimal values of

the problem functions and Lagrange Multipliers. The multipliers were obtained




by a direct solution of the onti 14ty conditions at x* using a

linear equation solver. The sum in the above expression is only

solution. Either because imposed constraint tolerances effectively allowed

(
]
. :
. over those constraints which are active at the optimum '
l
slight constraint relaxations or because the algorithms themselves generated E
primal exterior points, all of the codes tested except MAYNE would produce
solutions with slight infeasibilities. The relative error function defined °
above allowed a correction to be applied to the objective function errors
when slightly infeasible points are generated. Values of this error function

were computed for the intermediate iteration points recorded during each run.

The intermediate solution time:. (which excluded all I/0 time required for

recording test data) and error function values were fitted to polynomials
and these used as interpolating functions to determine solution times at
specified error furction “«vels. Mean solution times and standard deviations

were tabulated for each probiem/code or formulation combination at relative
2 3 ]0-4

error levels of 10 ¢, 10° , for all successful runs and at temmination

for all runs.

e em e e e ——

Each code was run with asingle fixed set of program parameters, the
values of which are given in Appendix A. These parameters were s2lected in

4

advance by experimentation so that a relative error of at least 10°  could

{
|

? , be attainedon trial runs with a few moderately sized problems. In many cases
i

! the program parameters correspond to values recommended by the program author.
§
¢

No readjustment of program parameters were undertaken during the main test runs.

As a result, some runs did not achieve error levels of 10'4.

Similarly, only a
minimum of program parameter retuning was undertaken if the run failed to make
any progress. The decision to avoid extensive parameter retuning resulted in gaps
in the solution time data. However, because of the large number of test

problems used, we belfeve these gaps do not seriously affect the conclusions of

! the study.




5. Results

An overall summary of the number of problems and number of runs attempted
with each code-formulation pair is given in Table 4. As shown all problems
were not run with each code. For some of the larger problems some of the
codes required in excess of 150K to load and hence could not be run under the
normal priority system used with the {)C6500 at Purdue University. Problem
42 had to be excluded from the study primarily for ihat reason. In other
cases, particularly the direct primal runs, the trend was sufficiently obvious

that runs with larger problems or with the complete set of starting points

was not deemed necessary. This was particularly the case with the.direct
primal runs, the OPT transformed primal runs, and the BIAS-SY runs. Finally,
in some cases, particularly the QUADGP run, the differences in the solution
times between the starting points for a given problem were sufficiently small,

that the number of points used per problem could be substantially reduced.

Even with these economies, the number of runs which were ultimately counted

in the study were nearly 6,000.

As can be seen from the last column of Table 4, the percentage of

unsuccessful runs, defined as the number of attempted runs that failed

to achieve any significant progress away from the starting point, varied
quite substantially. The conventional NLP codes RALP and MAYNE seemed

to be particularly prone to failure. The solution of the transformed primal
using OPT was also unreliable, presumeably because of difficulties caused by
the large number of constraints which are required by the transformed primal
formulations. Most surprising was the erratic performance of GPKTC which, at

times produced extremely fast solutions but in other cases failed

completely. Since GPKTC basically uses the Newton
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Raphsen equation solving algorithm, this erratic performance may well simply
reflect the often reported sensitivity of this algorithm to initial
estimates. Similarly surprising is the high number of failures of the special
version of BIAS, especially in view of the high reliability of the regular
version of BIAS. Both solved the convexified form of the primal: the former
used a modified Newton algorithm with analytic derivatives; the latter a DFP
algorithm with numerical derivatives. The most reliable performance seems to
have been achieved by the general L' ches OPT and BIAS when applied to
the convexified primal formulation. The next best performance was attained
by the specialized codes GGP and DAP. |

In order to facilitate the presentation of the more detailed test data

we will aggregate these resu]ts.into several series:

i) Comparison of solution times of various algorithms for a given GP
problem formulation.

2) Cross-comparison of solution times for the various formulations all

" solved using the same algorithm.

3) Cross-comparisons of the most successful algorithms found for each
GP formulation type.

4) Examination of how solution time varies with problem characteristic
dimensions for each of the various formulations.

The data reported in Tables 5 through 12 is all based only on the

successful runs. Moreover, the solution time for all runs of problems 15 had to

be excluded because of errors introduced during post processing of the results.

5.1 Intra-formulation Comparisons
This serfes of runs consists of primal, convex primal, transformed primal

and dual comparisons. Tables 5A, B, and C give mean solution times at

relative error levels of 10'2, 10'3, and 10'4. respectively, obtained using

tabeitiie sy
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the codes OPT, BIAS, MAYNE and RALP to solve the primal directly. Each

column of results also indicates the number of successful runs upon which
themean is based. From Tables 5A, B, and C it is clear, even without statistical
testing, that OPT is generally faster than the other codes,yielding solution
times less than 1/2 of the next best competitor's in the majority of cases:

3 4

20 of 35 at the 10-2 level, 17 of 29 at the 1077, and 13 of 21 at the 107 . i

Nete that quite a high proportion of the direct primal attempts failed to

2 relative error level.

advance the starting points to even “%e 107

The general resuits are quite in agreement witﬁ the conclusions of the
general NLP code comparison recently completed by Sandgren [ 1], in which
the GRG based codes outperformed all other algorithms, inciuding MAYNE,
RALP, and BIAS.

The corresponding comparisons involving solution of the convex primal
are shown in Tables 6A, B, and C. The codes involved in this comparison
are: the general NLP codes OPT, BIAS, and RALP; the version of BIAS
special%zed for GP's, and the specialized GP programs GGP and GPKTC.

Again the general purpose GRG code dominates the others in mean solution

times at all three error levels. Based on mean times GGP is second and

GPKTC third. However, in this series of runs there is less difference

between the means and, hence, statistical testing is necessary to provide

a more definitive ranking. It is clear, however, that overall OPT is at

least as effective as the specialized programs GGP and GPKTC. This in L
{tself 1s quite surprising in view of the fact that the latter two codes
are specially designed for polynomial problems and use analytic derivatives

rather than difference approximations as does OPT. [t should be noted that

e
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the version of GGP used in these tests performs some unnecessary computations

whose exclusion would have somewhat reduced the GGP solution times. In
setting up each new linear subproblem a conversion from the z to the x space
is made, the original constraints are evaluated in the x space, the cut is
generated, and the subproblem is reconverted to the z space for solution.
Timing estimates have shown that depending upon the problem characteristics
6 to 16% savings in CPU time could have been attained if all calculations

t had been performed in only the z space. Such mean CUP time reductions would N

not, however, substantively affect the observed comparisons. ;

The transformed primal results summarized in Table 7 indicate quite

clearly that the specialized algorithm DAP is faster: of eighteen problems

[

L

for which solution times are available for both, DAP has solution times 1/2 or

-

less those of OPT in 11 cases. OPT predominated in only 4 cases by

the same margin. In the remaining three cases the mean times were too close
to differentiate without statistical tests. This performance is as might be
anticipated, since in the OPT version used, the T-N tranformed primal linear
equality constraints are not accorded special handling. Moreover, the

transformed single term constraints

9idw) = exp(w,) <1

are not simplified to the form, wt.i 0, which would allow implicit rather
than explicit handling of such constraints. Both of these structural
features are exploited in DAP. However, it is interesting to note that the

differences in the solution times decrease (e.g. problem 1; 2, 11, 12, 13,

20, 25) or occassionally are reversed at the higher accuracy level (e.qg.

problem 16). This indicatesthat the GRR constraint adjustment strategy

employing Newton's method is more efficient than the Tine search based




o g

methods used in DAP. Since ivth zlgorithms essentially employ a similar

direction generation method (the reduced gradient), it is thus likely that
a specfalized OPT transformed primal version will obtain a superior performance
to that obtained by DAP.

Separate dual and transformed dual intra-formulation comparisons were
not carried out as part of this study. Earlier work, cited in Section 3,
indicated that the dual based MCS algorithmwas preferrable to a variety of other
dual and transformed dual approaches. A comparison of MCS solution times
with those obtained using QUADGP, which solves the transformed dual, fis
shown in Table 8. Using a 2 to 1 time ratio as being significantly different,

2 error level, in 23 of 32 cases

QUADGP is clearly superior, at the 10~
with MCS being superior in only 5 cases. However, at the 10'3 level this
slips to 15 vs 10 and at the 10”7 Tevel to 11 vs 14. Tnis swing is largely

due to the fact that QUADGP failed to solve problems to the lower error tolerances,

Thus Table 8 tends to confirm the conclusions obtained in earlier studies
about the general robustness of MCS.
The intra-formulation comparisons thus indicate that OPT is the most
effective for both primal and convex primal solution with GGP a convex
primal second. The specialized code DAP is better than OPT for the transformed
primal formulation. Intra-formulation comparisons are not given for the
dual and transformed dual.
5.2 Intra-formulation Comparison Using the Same Code
In order to elucidate which primal form is most efficiently solved,
we present a comparison of solution times for the primal formulations when

the same code is used for each formulation. Relative times are given for

OPT in Table 9 and for BIAS in Table 10.
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From the OPT and BIAS prirui to convex primal ratios, it is obvious

that the primal times are aliost always larger by at least a factor of two.

This indicates quite clearly that all of the differences reported by Dembo

‘E [4] between the best NLP solution times and the best specialized GP solution !
g times is due to the fact that the NLP codes (several of which were GRG
k

codes, as is OPT) solved the primal and the best specialized codes (GG and
GPKTC) solved the convex primal. A significant portion of the difference

in solution times appears to be due to differences in function evaluation

a
times. Evaluation of the term Hxn"t is carried out on the machine using x
n

logarithms, summing the results, and taking anti-logarithms. The term '

exP(Eant z,), on the other hand, can be carried out via a simple sum and a
single exponentiation. The former is much more time consuming. We have

observed numerous BIAS runs in which objective and constraint function values

at the successive unconstrained optimization stages as well as the actual ;
number of functional evaluations taken were nearly identical for both the &
primal and the convex primal iterations of a given problem: yet, the solution
times were very much different. |
A second commonly cited difficulty with GP primals is scaling, that is,
both the sensitivities of the various problem functions with re<gect to

variable changes are substantially different as well as the sensitivities of

any given function with respect to different variables varies substantially.

Undoubtedly, the favorable scaling introduced by the transformation zn=1n(xn) |

is reflected in the primal to convex primal solution ratios. However,

in our experience GRG codes are less sensitive to scaling than other NLP
algorithms; while the version of BIAS employed in our tests incorporate
automatic scaling of both constraints and variables based on the composite

Jacobian. Thus, we can not on the basis of our results conclude to what

e e

extent scaling is a factor.
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In comparing the convex and transformed primal results, the main difference
in solution times can be explained in terms of a trade-off between number of
variables and constraints and the reduction of variable interactions in the
non-linear functions. Since for any problem T>N, the transformed primal
always has higher dimensionality than the convex primal. Moreover, while both
formulations always have the same number of non-linear constraints, the trans-
formed primal will in addition have T-N linear equality constraints. When
T-N is small, as in problem 8, then solution times are close. However, when
T-N is iarge as in problem 12, then the solution times are substantially
different. Because problem dimensionality will be shown to be the predominant
variable in determining problem solution time, it seems unlikely that solution
via transformed primal can be made significantly more efficient than convex
primal solution, even if special provisions are made for the T-N linear *

equality constraints.

Fiﬁa\ly, it is of interest to note from Table 10, that the special GP
version of BIAS which uses analytic second derivations for unconstrained
optimization and line searching is considerably slower than the normal

BIAS code when both solve the convex primal form. This is particularly

noticeable as problem size increases. There is to be sure some reduction in

2 to the 10~3 error level, reflecting

the time ratio in going from the 10°
the expected faster convergence rate of the modified Newton algorithm.
However, the computitional time required to evaluate the second derivatives
apparently is not balanced by increased efficiency in the search. This
finding is consistent with the results reported by Sarma, et. al. [9] in

which a primal approach using analytical second derivatives was found

to be quite inefficient.
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Finally, we compare the sclution times for the various formulations
when each is solved using the code shown to be the most effective for that
formulation. Tables 11A, B, and C summarize the mean times for the best
primal (OPT), convex primal (OPT), transformed primal (DAP), dual (MCS),
and transformed dual (QUADGP) co-des. The mean times for GGP are also included
because they were sufficiently close to those of OPT. As can be seen from
these tables for any given problem the mean solution times of the two fastest
codes often differ by less than a factor of two. Moreover, as can be seen
from Table 12, the standard deviations of the means frequently are quite
substantial. Thus comparisons of the mean solution times necessitate the
application of statistical tests.

Assuming that the solution times x and y of two codes for any given
problem are normally distributed variables each with their own

2, then code solution time comparison

2
variances o, and o,
is equivalent to the problem of testing whether the true mean solution
times, Mx and My. of the two codes for the given problem are equal. This
is the Behrens-Fisher problem of statistics [21]. It can be shown that
2 2
if Sy

and ?y are the unbiased sample estimates of the variances, then

the variable

t = (;--y-) - (MX-MX)

2 2
(sx/ + S ) 1/2
y/
n, n,

will possess an approximate student t distribution with degree of freedom




In these expressions, x an. y, are the sample means and ny and ny are

the sizes of the two samples. Tilese formulas were applied to test the

»

difference in the means of the solution times given in Tables 11A, B, and
C. Sample results for the lo'zerror level are given in Table 13. The
Student t value was calculated using the means given in Table 11A and

standard deviations given in Table 12. The significance level of the

differences in the means can be determined using standard tables of the
Student t distribution [21, Appendix 2]. These significance levels are

given in the last column of Table 13 for those means which were based

on at least three runs. As can be seen from the Table, for several problems,
e.g. problem 2, the means were not significantly different. In the case

of problem 2, it was necessary to proceed to the fourth best mean time

before a significant statistical difference from the best mean time could

be established. !
These calculations were repeated at the 10'3 and 10'4 relative error

levels. The results were used to determine the number of problems for

which ;ach code achieved the best or second best solution times. An 90%

significance level was required before means were considered to be different.

In the case of differences below that significance level, both codes were

ranked equally. The results of this ranking are shown in Table 14. It

is quite clear that OPT applied to the convex primal is the best GP solution

approach overall. At the highest error level of 1072

» DAP and QUADGP are competitive
However, at lower error levels these two codes fade out to be decisively

4 )

§ overtaken by MCS at the 10" level. The better ranking of MCS at the 10°
error level, however, is largely a result of its robustness rather than its
speed. In 9 out of 13 cases in which it is first, it is the only code

to solve the problem to that accuracy level and in several of those
instances the solution times exceed 50 sec., a very large time within the

framework of this study.

- ) - L ——— - .m'v ; iy "‘
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In general, the dual base¢ odes are only competitive with the 25

convex primal solution methuds hen T-N is small and when the multi-term
constraints are active at the op:imum (eg. problems 2, 8, 13, 16, 32, and
34). The specialized codes, GGP, DAP, as well as GPKTC,overall do not
appear competitive with OPT. Quite clearly the successes of GGP and GPKTC
against other GP solution approaches, as reported in several recent
comparative studies [5, 7, and 9] are largely due to the fact that these

codes are based on the convex primal formulation rather any insights

" offered by GP theory. Thus these results do cast doubts on the computational

significance of many years of research into non-zero degree of difficulty,
prototype GP solution algorithms.

It should be noted that significant improvements in the performance
of OPT would in all likelihood be achieved if some structural features
of the convex primal are exploited. For instance, single term constraints
need not be treated as normal constraints but can be converted to l{near
inequality constraints. Also, computation of derivatives could be made
much more efficient by saving the term values for each posynomial during
function evaluation and then calculating the partial derivatives analytically

as a simple weighted sum of these term values, i.e.,

gk , f ant [ct exp (ﬁ ant!n)]

aan

where the quantities in brackets are the already calculated term values.
In OPT derivatives are calculated numerically by differences and single
term constraints are treated as explicit nonlinear inequality constraints.
5.4 Effect of Problem Dimensions on Solution Time -

The reﬁaining objective of this study was to attempt to deduce which
characteristic dimensions of a prototype GP problem could best be used as a

measure of solution difficulty. To that end pairwise correlation coefficients

SRR e Oy T
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were computed between soluticn . fficulty as measured by mean solution time
and seven different, but not nece:sarily independent, problem characteristic
dimensions. For purposes of these computations the total solution time
to termination of a run was used rather than the solution time to a specified
relative error tolerance. This is appropriate because the runs used to
calculated a given correlation coefficient all involve the same code run
with the same set of program parameters.

The results for two types of assumed relationshfps are given in
Tables 15A and 15B. Table 15A contains the correlation coefficients
obtained by assuming that solution time is proportional to an exponential
functionof the particular problems characteristic, that is,

time o bY
where y is the problem characteristic such as number of variables, number
of constraints, etc. Table 158 gives the correlation coefficients when a
linear relationship is assumed. For comparatiye purposes, the last column
of the tables lists the critical value of the correlation coefficient for
a 0.05 significance level ([21], p. 167).

For the primal solution approach (OPT-P) the solution time correlates
most strongly to the exponential of the number of the number of primal
variables. However, significant linear correlation also exists with the
number of constraints and the degree of difficulty. Note that the degree
of difficulty correlates better than either the number of terms or the number
of primal variables separately. Also the number of constraints correlates
more strongly than either the number of multi-term constraints or the number of
tight constraints. The dependence on the exponential of the number of variables
and the less than exponential dependence on the total number of constraints
fs as might be expected for a GRG code. The correlation to degree of
difficulty, on the other hand, is a GP problem characteristic which probably

reflects the time required to evaluate the problem functions.
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For the convex primal solution approaches (OPT-CP, GGP, and GPKTC) the

situation is less coherent. The strongest exponentially correlated variable
seems to be the number of primal terms both for GPKTC and for OPT. For both
the correlation coefficient is higher for primal terms than for either primal

variables or degree of difficulty. In the case of GGP, however, the number

of primal variables shows a higher correlation. The strongest linear
correlation appears to involve the degree of difficulty for GGP and GPKTC
but the number of constraints for OPT. Apparently the differences in the
operations of the algorithms used tc .olve the convex primal serve to
obscure the trends. Nonetheless, it is clear that fhe number of primal
variables becomes less significant and the number of primal terms as well
as the density more important in going from the primal to the convex primal.
In the transformed primal case, the exponential dependence on the number
of primal terms becomes even more pronounced. This is to be expected since
for the transformed primal the latter becomes equal to the number of problem
variables. The linear dependence on the number of multi-term constraints
becomes more pronounced because the effect of the single term constraints

is minimized since they are uncoupled as a result of the problem transformation.

In the case of the dual approaches, the most significant correlation
is found to the exponential of the degree of difficulty for the transformed
dual (QUADGP) and to the exponential of the number of primal terms for
the dual (MCS). This is consistent since these quantities correspond to
the number of variables in these formulations. Strong linear correlation
is shown to the number of primal multi-term constraints - significantly
stronger than to either the total number of constraints or to the number
of tight constraints. Apparently, this reflects the overhead of having
to deal with the A variables in the probiem formulations, regardless of

whether or not these vanish. Curiously the density of the exponent matrix
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shows no significant correlati: for either the dual approaches or the
transformed primal approaches, Lut does show a reverse correlation in the
primal and convex primal cases. The density correlation in the primal
case is probably spurious since it is unlikely that primal computation
time will decrease with increased density for problems of the same
dimensionality. After all, in the primal case, density reflects the
degree of coupling of the program variables. Most likely the reverse
correlation is induced because of the basically inverse relationship
between density and number of primal variables noted in Section 4.2. We
are thus led to conclude that density does not appear to be a reliable
primary indication of problem difficulty.

In summary, in all cases the key exponentially correlated problem
characteristic appears to be the number of variables in the problem
formulation. In going from primal to convex primal to transformed primal
to dual, the key linearly correlated problem characteristic shifts from
number of constraints to number of multi-term constraints. Number of
tight'brimal constraints is in all cases only a secondary factor. Density
of the exponent matrix does not appear to be a reliable primary indicator

of problem difficulty as measured in solution time.

6. Conclusions

Within the 1imits of the experimental design of this study, a key
feature of which is the use of fixed code parameters, the following
overall conclusions may be drawn:
1) the convex primal is inherently the most advantageous
formulation for solution.
11) - a general purpose GRG code applied to the convex primal is
competitive with the reputedly best specialized GP codes

currently available.




the differences between the primal and convex primal formulations

1ie mainly in scaling and function evaluation time.

iv) transformed primal solution approaches are not likely to lead
to more efficient GP solution than the convex primal
v) the dual approaches are only likely to be competitive for smal)

‘ degree of difficulty, tightly constrained problems. {

vi) posynomial GP problem di“"icuity as measured in solution time
is best correlated to an exponential of the number of variables

in the formulation being solved and is proportional to the

total number of multi-term primal constraints.
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E (v Table 3. The Effect of Starting Points on Solution Times
OPT
Starting OPT Convexified
Gem e ZrE_ T emem
1 2.991 2.7 1.094 .87 1.253
2 4.224 6.2 .684 .58 1.174
3 2.161 2.8 .770 .58 1.335
4 3.323 4.4 .748 .58 1.296
5 1.776 1.8 .995 .87 1.141
6 2.115 2.6 .824 .63 1.305
7 4.309 4.1 1.045 .68 1.535
‘ 8 5.673 8.3 .683 .53 1.298
, 9 5.722 6.8 .837 .65 1.320
\
10 4,214 3.8 %.100 1.00 1.104




. Table 4. Number of Solu-ions Attempted and Solved
Code Problems Runs Runs % Unsuccess ful
Attempted Attempted Failed Attempts

OPT-P 40 399 27 6.77
OPT-CP 41 616 1 0.16
OPT-TP 25 452 124 27.43
GGP 41 598 24 4.0
GPKTC 39 589 240 40.75
MAYNE 31 379 61 16.09
RALP-P 34 446 146 32.74

. RALP-CP 37 552 115 ° 20.83
BIAS-P 39 260 1 0.38
BIAS-CP 40 457 0 0.0
BIAS-SV 29 166 21 12.65
MCS 26 412 60 14.56
DAP 40 406 14 3.45
QUAD-GP 34 149 13 8.72

. -l e




Table 5A Direct Primal Results

1072 Relative Error
AVG. CPU Time (Secs)

Problem 0PT BIAS MAYNE RALP
Number 7 TIME 7 TINE 7 TINE 7 TINE

] 20 | 0.6319 | 20 1.0935 |20 | 3.095 10 0.1270
2 20 | 0.3834 | 20 11410 |20 | 1.8085 | | -----
3 14 [ 0.2402 | 20 0.1898 |18 | 1.3724 | 18 0.6950
4 19| 1.2517 2 | 3335 | | ----- 20 0.8865
5 20 | 0.2363 | 20 3.458 | | --e-- 20 0.3370
6 | | ----= | ] ----- 1 |13.88 | | -----
7 19 6629 2 | 31.29 2 .651 ] 0.7210
8

9
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Table 5B Direct Primal Results

1073 Relative Error

AVG. CPU TIME (Secs)

Problem  OPT BIAS MAYNE RALP
Number [ F TIHE 1 TIVE ¥ TINE 7 TINE
1 20 | 0.6475 | 20 | 1.71» 20 3.461 10 0.130
2 20 | 0.4953 | 20 1. 500 29 2509 | | -----
3 14 | 0.295 | 20 0.209 20 1.5565 | 20 0.768
4 19 | 1.3514 1 133.74 | | -ee-- 20 1.191
5 20 | 0.3895 | 20 4.093 | | ce--- 20 0.6185
9 20 | 0.6671 | 20 3.978 2 5.161 1 1.496
10 19 | 1.m177 2 | 13.81 2 4.576 20 7.08
1 20 | 0.6414 | 20 2.7 20 5.717 20 2.289
12 20 | 1.0209 | 10 5.501 17 8.647 20 3.22
13 20 | 0.9925 | 20 3.717 20 5.769 17 3.986
14 3| 0.5036 | 19 0.7427 | 19 3.836 19 2.569
16 20 | 0.9849 | 20 5.937 20 9.293 10 | 10.036
17 20 | 3.4559 2 | 24.515 19 |21.35 | | -----
18 2 | 3.4367 | | ceeem || e | eee--
20 2 | 1.9572 2 9.416 20 |11.38 13 | 11.66
22 | | a-e-- 2 | 31.715 2 [|27.88 | | -----
7.3 S (R ERutvu [ (Rutviu i N (U N R
26 | | eeees 2 | 27.452 14 (27.35 | | -----
25 | | eeee- 2 | 14147 13 | 19.726 4 | 21.20
26 | | ----- 2 | 29.80 n 23.79 | | ee---
27 1] 51514 | eeeee || emee- 1 4.325
28 || emeem | emee- 17 |63.98 | | -----
29 2 | 13.316 2 | 35.65 | | emeee || eeees
30 1 §.576 | | ee-== | | emeee || eeeee
31 2 | 5.2618] | ----- 20 |56.54 | | -----
32 || ee--- 2 ] 19.625 | | eemme || emee-
34 1| 6.3759 2 | 3614 | | emeee | eeee-
3 || =--- 2 | 163 | | eemee || eeme-
39 112617080 | eemee || e | ] eeeee
40 1 154.8196) | eee== | | emeee || eeeee




Table 5C Direct Primal Results

10'4 Relative Error

AVG. CPU Time (Secs)

Problem] _ OPT BIAS MAYNE RALP
Number [ 7 TINE 7 TINE 7 TIHE 7 TINE
--------------- 3 0.129
20 | 0.6147 1 1.747 20 2.762 | | aeees
14 | 0.3323 | 20 0.213 20 591 10 0.8352
L0 I T %< 74 200 K AN B (RO 20 1.3685
4 | 0.6862 | 20 4.510 2 6.088 | amee-
18 | 1.5322 2 | 14.229 2 4.986 | 20 8.035
16 | 0.7926 | 20 3.298 20 6.651 | 18 2.516
20 | 1.5076 | 10| 6.579 17 | 10.085 | 19 3.499
18 | 1.5786 | 20 4.793 20 7.890 | | -----
--------------- 1 3.021
20 | 1.8454 | 20 7.202 20 | 10.751 3 1.183
1| 8109 | | ceeem || e || eeee-
2 | 3.273 2 9.9185 | 20 | 16.707 | | -----
----- 2| 14.6965 | 13 | 27.06 S
1] 5,282 | | emeem || eee-- 1 6.654
............... ) 6.654
2 [17.767 2| 48138 | | . eeeem | | eee--
1] 6.959 | | cemem || eemem || meee-
S OO 20 | 64.01 | | =-e--
----- 2| 22.10 cee- —
----- 2| 52.49 ————— S
1 [26.58 | | eeeee || emeee || eeee-
(R T30 7 S I SRR I ety I [
f

prce -G M IR

e il 1




Table 6A; Conve-it* 1 Primal Results
10'2 Relative Error
AVG CPU TIME (secs)
0PT BIAS BIAS-SV GGP GPKTC RALP
# TIME # TIME # TIME # TIME # TIME ¥ TIME
20| 0.4842 1 20| 0.6925) 4 | 0.6545] 20 | 0.2998 | | -=--- 20 | 0.1075
201 0.1753 { 20 | 0.5005}| 1 | 0.3250 | 20 | 0.2714 | 20(0.3320 | | ~==--
18} 0.0873{ 18 | 0.0818 {18 | 0.0708 | 18 | 0.2243 { 18 |10.2510 | 18 | 0.3650
20 | 0.2656 2 120.686 4 N11.779 20 | 0.2828 | 20 10.4940 | 20 | 0.8775
20 ] 0.0972 | 20 | 1.0305 {20 | 1.5750} 20 | 0.3747 | 20 | 0.2845 | 20 | 0.3220
201 0.2963 | | c-e== | | -e-ea- 20 [ 0.4283 | | ----- 20 | 4.999
20 | 0.2081 215.973 | | ----- 20 1 0.3126 | | -e-ea 19 | 0.6582
20} 0.2005 ) 20 | 0.7731 ) | ==--- 20 1 0.3160 {|  -eeec | ]| ee---
20 | 0.2774 | 20 | 1.253 {10 | 2.653 7 10.3166 | 20! 0.4900 | 20 | 0.9635
20} 0.1292 | 20 | 2.853 2 1 9.51 20 | 0.7512 1 20{0.3935 | 20 | 1.244
20| 0.2643 | 20 | 1.634 {10 | 3.512 20 ; 0.5520 | 18| 0.6185 { 20 | 0.9100
201 0.4001 | 20 | 2.284 |10 | 5.881 20 [ 0.6240 | 16 | 1.0940 { 20 | 1.402
201 0.1820 1 20 | 0.6625| | ----- 20 | 0.6530 | 20| 0.4590 | 20 | 1.187
14| 0.0963 | 14| 0.1637 {14 | 0.5308 | 18 | 0.6005 | 910.8852 8 | 0.9823
18| 0.1944 | 18 { 1.127 2 ] 9.639 18 | 0.8927 ; 18] 0.7353 | 18 | 5.588
.20 | 0.8506 ] 20| 2.099 1 131.32 20 | 0.7925 ' 201 1.077 20 | 2.750
20| 0.4696 | ~-=== | | e==cc | | emeea | | caeaa 11 5.259
20 | 0.5193 ] 20 | 5.605 2 163.39 20 | 1.651 | | ==--- 15 | 9.463
201 0.3175 | 20| 2.360 2 1718.324 19 | 2.932 | | ==--- 20 | 5.620
----- 10| 7.506 2 mo.es 20 | 2.293 91 3.983 13 1 8.643
201 1.3209 | 10| 6.635 | | =~--- 20 | 2.206 | | ~=-~- 9 | 8.216
20 -1 T A (R D S TEr = S (U eR N e N Y
----- 10| 7.750 2 [4n.38 20 1 1.1495 { 10} 6.707 ————-
----- 20 | 3.602 2 145.87 20 | 3.450 1) 3.075% 20 | 8.213
----- 10 {11.334 ————— 20 | 1.837 p—— 71 7.165
111.0102}F | =ee== | | ===== 1 | 0.456 1(2.210 14§ 6.302
20| 2.516 2124,08 | | -e--- 20 | 1.979 | | ~=--- 11 {12.14
20 | 1.4573 81 4.57M 2 191.65 20 | 3.245 8135.28 10 115.74
1} 2.6070 | | ===== | | === 1] 0.480 | | «ceee || ewm---
2 1.6350 ] | ==ce= | | cemee |} emmen ] | emmee | | eeee-
----- 15| 3.337 2 |83.59 15 { 1.6345 | 15] 1.1870 | 15
21 0.8279 21 6.290 | | -==-- 2 12177 1] 3.476 | | e----
20| 0.7272 21 5.022 | | =e--- 2 1 7.57) 19| 2.229 6
21 0.7605] | ea-e= | | cem-- 2| 8.225 | | -=--- 1( 82.43
--------------- 1 1.543 ————- S
-------------------- 1{13.559 1| 31.45
1133.05 | | ==eae= ] | e-=a- 1 1 8,751 | | cmeee | | eeea-
11 4,944 | | =cccc ]l | ceeee |1 mmmee e | e
1112.800 | | =====| } ce-ea } 4 eemee } | emeee | f ee---

Ao




Table 68: Convexified Primal Results
10'3 Relative Error
AVG CPU TIME (secs)

Prob . oPT BIAS BIAS-SV GGP GPKTC RALP

0. # TIME # TIME # TIME # TIME # TIME # TIME

1 20 0.4948 20 0.959 4 0.9717 20] 0.2878 20 0.112
2 20 0.2296 20 0.6145 1 1.451 20} 0.3293 1 20 0.332 | | =-=---
3 18 0.149] 20 0.0925 | 20 0.0815 | 20| 0.2707 | 20 0.2565 } 15 0.3965
4 20 0.2993 §{ 20 { 21.52 3 12.625 20| 0.3246) | e==-- 20 0.9115
5 20 0.1809 20 1.2365 | 20 2.248 20 0.4702 20 0.3015 | 20 0.490
g 19 0.3503 )} | eme== | | e=e-- 20 0.4659 ) | e--e=- 17 5.109
8 | | ceeee bl a0 e | meeee |} emeee ] emee-
9 20 0.3174 20 1.4025 7 3.592 71 0.4119 | | ==e-- 20 10.343
10 20 0.1872 20 3.291 2 12.047 20 0.9647 | 20 0.4385| 20 1.4M
11 20 0.3244 20 1.8085 3 3.920 20| 0.647 18 0.6265 | 19 1.051
12 20 0.5014 } 20 2.474 |10 6.582 201 0.752 18 1.1 15 1.615
13 20 0.3613 20 1.0985) | =—==-- 20| 0.8475 20 0.. 2 1.649
14 20 0.1446 19 0.2166 | 19 0.6365 19 0.8097 14 0.8 .5 10 1.328
16 20 0.4082 20 1.5855 | 2 10.463 20 1.3205 ¢ 20 0.856 20 7.790
17 20 0.9798 | 20 2914 | | —-e-- 201 0.995 | | ee--- 20 3.092
18 4 0.7012 ] | acece ]l emmee |} ememe || emee= | [ eeee-
19- {12 0.8774 | | ee-e- 2 64.15 | | eme== ] ] =eees | ] eee=-
20 20 0.5275 20 2.917 2 20.36 19 3,782 | | eee-- 18 5.757
4 T D T T T I (NPHItoR S e N B e D BT T T LI B S L D
22 20 1.6684 8 7.633 | | ~-e-- 201 2.681 | | e=--- )| 8.157
23 20 1.9682 | | eceeee | | eeeme |} eee=e ] ] emeee ] meee=e
28 | | ----- 10 8.755 1 44 .14 201 1.43451 10 6.766 | | ~----
25 | 1 e-e-- 20 4.359 2 51.24 201 4.435 ] 3.097 20 8.597
26 | ] ce-e- 10} 12,102 | | ----- 20) 2.408 | | eee-e 3 8.311
27 1 1.3333 ) | emeee | | ewe-- 1 0.577 1 0.4882 1 6.305
28 | | e---- 21 25,475 ] | e---- 20| 2.774 | | =~e=e 10| 13.052
29 20 2.233 8 8171 | | =e=-- 20 4.614 8| 37.03 71 16.190
30 1 2.843 | | emee= | ] e ] ) meee- ) emme- | mmeee
K} 2 1.5293 ] | a-=« | | ece-= || eme== | | ee==~ | | ==e--
32 1 | ----- 20 4.367 2 89.77 201 2.234 20 1.4365] 20 13.598
E T N N R R I O R P e N S e
34 1 0.8861 2 7.382 | | ~=e-- 21 2.905 | | eeme= | | e==--
35 18 1.1286 2 8,095 | | ~==-- 2110.050 { | ==--- 6 11.3N
36 2 1.0815 ) | === | | ea--- 2 7.276 | | ----- 1 83.12
<720 D TP N IRNSCUPIIE B e B B e Lt B Bk
8 | | cccco | e | e e 13.559 | 1| 196.366
39 1 40.46 { | e==e= | | =~--- 8.751 | ]| e=e-- 1 79.72
40 1 6037 | | e || e ] e ) e ] meeee
41 1 16.006 | | -] ] eeeen | ] eeee= 1} eeme= b ] mee--

e

TR




Table 6C:

Convexified Primal Results
Relative Error

1074

AVG CPU TIME (secs)

Prob 0PT BIAS BIAS-SV GGP GPKTC RALP
No. # TIME # TINE ¥ [ TLiE ¥ | _TINME 7 TIME | _# TIME
20 | 0.3058| 20| 0.762 1 ]1.572 |20} 0.3763 | | cmeee | ] oeee-
18 0.1617] 20 | 0.095 | 20 {0.083 |20 | 0.3115 |20 | 0.2575] 2| 0.390
12 ] 0.3875) | ----- 1 |12.316 |20 | 0.4179 | | ----- 17| 1.067
8] 0.3509| | -emee | | ---e- 20 | 0.5841 | | eeemm || eeea-
71 0.3584 | 20| 1.584 | | ---e- 70833 | | ----- 15 | 10.910
16 | 0.2643| 20 | 3.34 2 |12.520 (20 | 1.148 |20 | 0.451 |20 1.574
91 0.3726 | 20 | 2.001 | | ----- 20 1 0.7905 | 1 | 0.641 | 2| 1.192
7] o0.5898| 20 | 2.876 1 | 4.966 | 20 | 0.897 1] 1.8 | | eeee-

99| o0.4472| 20| 1.3795 |  |---o- 20 1 0.994 |19 | 0.9346 {16 { 1.9319
9| o0.1968| | ---e- | fo--e- 14 {1.1887 | 9 | 1.1792| 3| 1.128
20 | 0.6257 | 20 | 1.8845 | 2 |10.629 | 20 | 1.68 20 | 1.0045]10] 7.401
17 1229 | 20| 3.919 | |---e- 2011718 | | ----- 12| 3.23
5| o0.7546 | 20 | 3.054 |  |---e- 315608 [ | ceeee | | em---
----- 20 | 4.486 2 |51.46 6 | 6.027 11 3.169 ———--

1] v70a9 | | emeem } 0 |---e- 110705 | | ----- 1| 6.305
---------- ————— 8 | 3.026 ceem= | 1] 15.439

19| 2.978 2 | 15.0a7 | |---e- 20 | 7.03 1 ,15.183 | 1| 18.364
1) 3002 | | ameem | |e--e- [ IR B e N R
----- 20 | 5.465 2 ]90.93 | 20| 3.516 |20 | 1.7865 S

1| 1.2 | 1| 9.198 | [---eo 2 (13.205 | | ----- 6| 11.393
1] 1.2695{ | ----- ————- 2 [1.18s | | -e--- 1] 83.19

......................... 1 {212.9

11 45.4 | | ameee } 0 feeee- 112099 | | ----- 1| 85.75

1] 6153 | ] ceeee 0 feeeee | eeeee ) e | —eee-

LN R -0 -2 A UPURSUUUE I FPUSR I R Y e B "




Table 8 Dual Results

CPU Time (Seconds)

'|lllllllll-lllllll-lllIll-lll--l-llllllllllllll|||llllI-----------------t——

Relative Error 10 2 Relative Error 10'3 Relative Error IO'Z
Prob MCS QUADGP MCS QUADGP MCS |__QUADGP
No. # TIME TIME # TIME # TIME # TIME 4 TIME
1 20 0.4950 1 0.8530 | 20 0.542 | | ea-e- 20 0.546 | | ce---
2 6 0.1430 4 0.1533 {18 , 0.2081 4 0.17883! 20 0.2275 | 4 0.1896
4 20 0.6140 ; 5 0.1979 | 20 i 0.768 5 0.2689 | 20 0.873 5 0.2904
5 15 0.8070 5 0.1923 | 20 1.995 5 0.3070 | 20 4,07 | | emaa-
6 | | -e--- 5 0.8166 | | -—-ce- 5 0.9524 | | ee--- 5 .0253
7 | ] eee-- 5 0.4284 | | ce--- { } memee || eeee- 5 1.0253
8 20 0.1666 5 0.08015( 20 ' 0.1724 ! | --e-- 20 731 ] e
9 20 0.5370 5 0.1647 | 20 ! 7755 ¢ 5 0.2377 | 20 1.1980 @ 5 0.2463
10 20 0.7160 5 0.5392 | 20 1.7185 ! 5 0.5823 | 20 2.40 5 0.6012
11T | | eee-- 4 1.4333 | | e--=- i 4 1.6942 | | eeec- 4 1.8505
12 10 | 10.485 4 i 15.43 10 | 15.93 3 16.387 10 | 16.471 2 15.275
13 15 0.2263 5 0.1444 | 19 | 0.3658 | 3 0.3026 | 20 0.3915 | 3 0.3292
16 9 0.3100 2 0.5986 § 19 | 0.3755 | 2 0.6175 | 20 0.4605 | 2 0.9315
17 20 2.554 5 1.3402 | 20 5.0 5 1.9298 | 20 5.331 5 2.086
18 § | =e--- 5 4694 | | wmee- | | === | ] eeemee | eeaas
19 20 1.2655 4 0.3454 | 20 1.4365 | | e--e- 20 1.8135 ] |  ee-aus
°1 20 5.420 4 0.8676 | 20 7.476 5 | 1.2255 | 20 8.856 5 1.6259
- |} eeeaa 5 1.2101 | | wmme= | ] meem= || emmee ]| eeees
22 | ] eee--- 4 2.615 | | eee-- 4 10.049 | | «eeee || eeaa-
23 1,167.53 4 6.707 11177.43 | | ==--- 11178.43 | | ~e---
24 20 1 10.394 5 2.707 20 | 15.42] 5 3.287 201 16.622 | | e--e-
25 20 | 11.621 3 5.062 20 | 12.784 2 4.486 20 { 12.901 1 5.541
26 3 13.106 5 3.000 3| 78.99 5 3.79 31117.99 | | eea--
27 10 1.2995 3 5.230 10 3.913 | ]| eee-- 10 7.786 | |  eeee-
28 10 1.389 | | eewa- 10 7.638 | | ---=- 10| 10.359 | | =ec--
30 | ] eeee- 5 0.6464 | | cee-= | | ee==e } ] eeeee | eeea-
3 10 0.9825 5 0.7738 | 10 1.3435 | | ==e-- 10 1.767 | | =ew--
32 5 0.4750 2 1.9732 | 10 0.607 2 2.135 10 0.673 2 2.452
33 8} 28.89 4 3.035 8| 40.63 | | ee---- 81 51.81 | | eeme--
34 9 0.3250 5 0.1225 | 10 0.4805 | 5 0.1314 | 10 0.543 | | eec---
38 | ] e---- 3 126.597 | | =-e-- 3 31.977 | | eee-- 3 35.06
40 | | e==-- 4 | 19,067 | | ~---- 4 31.18 | | eee-- 4 35.15
- e — - — ———— e e
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Table 9: (OPT Primal Form Comparisons
(CPU Times Divided by Convex Primal Times)
Problen Error 1072 Error 1073
No. p/CP TP/CP P/CP TP/CP
1 1.31 8.26 1.31 8.36
2 1.96 2.95 2.16 3.06
3 2.75 -—- 1.98 ---
4 4.7 2.90 4.52 2.79
5 2.43 --- 2.15 -—-
7 3.19 4.00 -—- ---
8 3.77 1.33 -~ ---
9 2.09 3.13 2.10 3.09
10 4.10 --- 5.97 ---
n 1.74 7.69 1.98 8.18
12 1.81 19.64 2.04 20.47
13 2.04 3.38 2.75 3.00
14 4.83 ~-- 3.48 ---
16 2.25 4.59 2.41 6.26
17 3.50 9.15 3.53 8.75
18 3.86 --- 4.90 -—-
19 -—- 7.89 - ---
20 2.49 19.82 3. 21.74
22 15.88 10.81 --- 10.67
23 11.13 --- ——- -—-
27 4.2] -~ 3.86 ---
28 3.43 --- -—- -—-
29 4.78 - 5.96 ---
30 2.04 --- 1.96 -—--
3] 2.67 -—- 3.44 ---
34 6.49 --- 7.20 -
! 35 1.94 -- -—- -—-
: 39 0.670 - 0.647 ---
40 | 9.3 9.08 -

i 0 T

PR ST




Table 10:

BIAS Primal Form Comparisons

(CPU Times Divided by Convex Primal CPU Times)

-2 -3
Problem u 10 Error = 10
No. CP-Sv/CP p/CP Cp-sv/Cp

1 1. 0.945 1.68 1.02

2 2. 1.77 2.21 2.36

3 2. 0.866 2.26 0.881

4 1. 0.564 1.57 0.586

5 3. 1.53 3.31 1.82

7 5. --- --- ---

8 5. --- --- ---

9 2, 2.12 2.84 2.56
10 4. 3.33 4.10 3.66
n 1. 2.15 1.49 2.17
12 2. 2.57 2.22 2.66
13 3. .- 3.38 ---
14 3. 3.24 3.43 2.94
16 3. 8.55 3.74 6.60
17 3. 14.92 8.4 ---
19 3. 11.31 --- ---
20 3. 7.76 3.23 6.98
21 3. 14.74 | memee ] meme-
22 3. --- 4.94 ---
24 2. 5.21 3.14 5.04
25 2. 12.73 3.25 11.75
26 2. --- 2.46 ---
28 2. --- .- -
29 4. 20.05 4.36 ---
32 q, 25.05 4.49 20.56
34 4. --- 4.90 ---
35 6. --- 5.14 ---




'l'.-......-----...--.--'-----.-.-..l..-..--”“"““-ﬂ-llﬂ-ﬂll--hw

Table 11A: Summary Cross Comparison: Relative Error 10'2
CPU Times in Seconds
PRINAL C-PRIMAL C-PRIMAL T-PRIMAL DUAL T-DUAL
(oPT) (0PT) (GGP) (DAP) (MCS) (QUAD GP)
1 0.6319 0.4842 0.299 0.24N 0.4950 0.8530
2 0.3434 0.1753 0.2714 0.1440 0.1430 0.1533
3 0.2402 0.0873 0.2243 0.0595 | e-ees | emea-
4 1.2517 0.2656 0.2823 0.4625 0.6140 0.1979
5 0.2363 0.0972 0.3747 0.2306 0.8070 0.1923
6 | ----- 0.2963 0.4283 0.2190 | ----- 0.8166
7 0.6629 0.2081 0.3126 0.3538 | ----- 0.4284
8 0.7544 0.2005 0.3160 0.4006 0.1666 0.08015
9 0.5805 0.2774 0.3166 1.332 0.5370 £.1647
10 0.5316 0.1292 0.7512 0.1747 0.7160 0.5392
N 0.4586 0.2643 0.5520 0.5076 | @ ~---- 1.4333
12 0.7237 0.4001 0.6240 1.1840 10.485 15.43
13 0.3718 0.1820 0.653 0.3081 0.2263 0.1444
14 0.4648 0.0963 0.6005 1.0804 | -ee=e | we--- |
16 0.43N 0.1944 0.8927 0.1699 0.3100 0.5986
17 2.978 0.8506 0.7925 11.027 2.554 1.3402
18 1.8140 0.4692 | ----- 0.3685 | ----- 4.694
19 | ----- 0.5193 1.651 7.590 1.2655 0.3454
20 0.7904 0.3175 2.932 2.287 5.420 0.8676
21 | eee-= | eeea- 2.293 3.220 | ----- 12.101
22 20.98 .3209 2.206 15.083 | ----- 2.615
23 17.692 .5894 | ee-ee | e-e-- 167.54 6.707
28 | ---em | eee-- 1.1495 9.548 10.394 2.7078
25 | ee--- | ----- 3.450 1.6304 11.621 5.062
26 | ---e- | aeaaa 1.837 29.96 13.106 3.000
27 4.248 1.0102 0.456 1.3162 1.2995 5.230
28 8.622 2.516 v 1.979 8.533 1.389 | -----
29 6.965 1.4573 3.245 | eeem- | meeee ) meee-
30 5.308 2.607 | 0.440 0.4090 | ----- 0.6464
K] 4,359 1.6350 | ---------- 0.9825% 0.7738
32 | ----- [ eee-- 1.6345 0.2249 0.4750 1.9732
X J O I T T P R 28.89 3.035
34 5.370 0.8279 2.127 3.805 0.3250 0.1225
35 1.4072 0.7272 7.570 0.2962 | -==-- | ====--
36 | ----- 0.7605 4.225 0.4649 |  e-e=-- I =-e=e-
37 | ----- | a-e-- 1,543 | ----- 4 ee-e- ---
38 | e---- | e | eeees 2.475 | e---- 26.58
39 22.13 33.05% 8.751 5.016 | ee=-- 1 ceee-
40 46.03 4948 | ----- 1,731 ) ee--- 19.067
4 | ----- 12.800 |  ----- | s---- | cm=m- L m=mes
U USRI e




Table 11B: Summary C: s-Comparison (Relative Error 10 3)
CPU Time in Seconds
PRIMAL C-PRIMAL C-PRIMAL T-PRIMAL DUAL T-DUAL
(opT) (oPT) (GGP) (DAP) (MCS) (QUADGP)
1 0.6475 0.4948 0.2878 0.3590 0.542 | -----
2 0.4953 0.2296 0.3293 0.2167 0.2081 1.7883
3 0.2956 0.147N v.2707 0.0690 | --=== | @ —--=-
4 1.3514 0.2993 0.3246 0.4925 0.7680 0.2689
5 0.3895 0.1809 0.4702 0.6149 1.995 0.3070
6] ~e~-- 0.3503 0.4659 0.4038 |  --=w- 0.9524
y 2 IRV ENITURR RN IIOROICUR RN SRR
81 =-=== | eeeee | eemee ] cmean 0.1728 | ~ee--
9 0.6671 0.3174 0.4119 2.021 0.7755 0.2377
i 10 1.1177 0.1872 0.9647 0.2903 1.7185 0.5823
11 0.6414 0.3244 0.647 1.3407 |  ~---- 1.6942
12 1.0209 0.5014 0.752 2.393 15.93 16.387
13 0.9925 0.3613 0.8425 0.7693 0.3658 0.3026
14 0.5036 0.1446 0.8097 1.4042 |  cecue | eeea
16 0.9848 0.4082 1.3205 1.0381 0.3755 0.6175
17 3.455 0.9798 0.995 12.992 5.00 1.9298
l 18 3.436 0.7012 | ----- 0.3399 | ~ece- ] ee-ao
19 ]  --e-- 0.8774 | ~-=w- |  eeae- 1.4365 |  -----
20 1.9572 0.5275 3.782 10.22 7.476 1.2255
4 B o T T " Oit e Ipuuetpurie It E A
221  ee-- .6684 2.681 | cceee | —ee-- 10.05
23| ~e--- 9682 | --==x | eeee- 177.4 | ee-e-
28| eemee ] el 1.4345 17.44 15.42 3.288
251  eeme- e 4.435 9.638 12.78 4.486
26 - | ceeea 2.408 30.75 78.99 3.790
27 5.151 1.333 0.577 10.158 3.914 | -----
281  —em-e | aeaa- 2.775 13.403 7.638 | @ -----
29 13.316 2.234 4.614 | cecec | mmens ] eeme
30 5.576 2.843 | ceeee | emeae | emeae 0 aeaaa
31 5.262 1.5293 | ceece ] ceeao 1.3435 | ce---
K YA B T 2.235 1.242 0.607 2.135
K I N T T T TPt (U UDR e B 40.63 | ~-e--
34 6.37¢ .8861 2.905 27.°5 0.4805 0.1314
3B ee--- 1.1286 10.051 3,672 | meeee | meea-
36} ----- 1.0415 7.276 0.67¢3 |  meem=e | meea-
K A e DL LT T TN [VORCUPE IR UR Iy R
c1: 2 E PR R A, 2.7717 | e=me-- 31.97
39| 26.17 40.47 9,751 5.016 |  ceeme | eeee-
40| 54.82 6.038 | ----- IN | e 31.18
41 f  -e--- 16.01 | «--ec ] mmean ] emmee | eeeaa

b inittectniilibitene,




Summary (rc:s-Comparison: (Relative Error 10-4)

Table 11C:
CPU Time in Seconds
PRIMAL C-PRIMAL | C-PRIMAL T-PRIMAL DUAL T-DUAL
(0PT) (0PT) - (5GP) (DAP) (MCS) (QUADGP)
1 | eemem | eeeee | e 0.4729 0.5460 | --=--
2 0.6147 0.3058 0.3763 0.3073 0.2275 0.1896
3 0.3323 0.1617 0.3115 0.0706 | ---== | o e----
4 1.37117 0.3875 0.4179 0.5065 0.3730 0.2904
5 | emmme | memee | meeee | eeees 4.070 | -----
6 | ----- 0.3509 0.5841 0.7386 | ----- 1.0253
y 20NN VRS I (NUpurRa i I eupupu Y S I
- A [ U i 0.1731 |  -----
9 6862 3544 9290 1.198 2463
2 . i




U oy ageon m—r-cey ”
022L°0 902°0 £6°8 0v02°0 8061°0
LLO° — (92°0 2eLL-o
S6£°0 9€6°0 5¢°9 2550°0 9£(0°0
2£100°0 021170 v180°0 68€L°0 90%0°0
_— —_— 0L°2 5080°0 26%0°0
83100°0 g2LLo §6£0°0 gLLL o ¥2€0°0
09€" v5°L 20€° 1 ¥8£0°0 9Lp0°0
629°0 — 8%2°0 ¥850°0 1520 0
£2800°0 Svy°0 0910°0 88070 £6£0°0
6210070 LLLO 05°2 0220°0 8L10°0
R/100°0 901070 209170 S810°0 9/10°0 8
LGN 0 o §550°0 9€€0°0 LL1070 L
PR — 86%0°0 1050°0 2rs0°0 9
€£20°0 v9€°0 v o LYS0°D ¥0%0°0 S
69€00°0 §2.0°0 91y°0 LLIO°O 221070 ]
—_ 0£00°0 £600°0 LLv0"0 95€0°0 £
9LL 0 §590°0 2250°0 ¥S10°0 SS%0°0 Z
_ SLY°0 81£0'0 LL00°0 9980°0 L
Jaquny
49avynd SINW dva d99 dJ-1d0 wa | qoug

ﬁmlo_. 30 Jd0uu3 w>_.um_.wmv eleQ sSuoLlelaaq pJdepuels w_.nEmw ‘2l 9tqe}




e gy

—_— —_— 0seL o —_— 8¢c’0 S¢
88100°0 202°0 —_— —_— —_— ve
29870 9L°¢ — — — €€
8Lv°0 €120 ) 185{°0 L6€°0 — 43
2210 €16°0 -_— _ -— 1€
£€60°0 —_— -—_ —_— S 1]
_— —_— I ¢Ls°0 0ceL 0 6c
_— GEBL'O —_— 09t°G 9te"0 8¢
Sve°t £86°0 86°¢ 68L°0 -_ 9¢
089°1 16°¢ oL¢ LEE°0 I S¢
otL°o oe°¢e S6°01 GeL’o — ¥e
S6€°0 — —_— 9,270 82270 2Z
TN I— 29671 85€°0 — 12
19¢°0 L ¢ v ¢ SEv°0 1e0°0 0¢
JaGuny

d9avnd SIW dva d99 dJ-1d0 u (qo4d

(panuijuod) “g| 21qey




Table 13. Sample Student Test Results
(Relative Error 10-2)
Problem Code with Next Best Student's Degree of Significance
Number Best Avg. Code t value Freedom Level of
Time Difference (%)
1 DAP GGP 7.203 21.45 99+
2 MCS DAP 0.053 38.01 10-
QUADGP 0.172 3.65 15-
OPT-CP 1.811 35.44 90+
3 DAP OPT-CP 3.208 19.54 99+
4 QUADGP OPT-CP 21.23 24.68 99+
5 OPT-CP QUADGP 6.26 11.23 99+
6 DAP 0PT-CP 4.70 39.70 99+
7 oPT-CP GGP 12.31 29.82 99+
8- QUADGP MCS 34.6 22.90 99+
9 QUADGP OPT-CP 28.02 19.86 99+
10 0PT-CP DAP 4,795 25.78 99+
n 0PT-CP OPT-P 12.02 24.65 99+
12 0pPT-CP GGP 11.28 29.96 99+
13 QUADGP OPT-CP 5.08 19.54 99+
14 OPT-CP 0PT-P 6.18 21.11 99+
16 DAP OPT-CP 1.205 28.84 75+
MCS 4,525 36.35 99+
17 GGP 0PT-CP 2.730 35.92 99+
18 DAP OPT-CP 0.903 5.77 60-
0PT-P 11.62 9.50 99+
19 QUADGP OPT-CP 2.34 8.49 95+
20 0PT-CP 0PT-P N.A. N.A.
21 GGP DAP 1.662 7.380 85-
QUADGP '5.144 4,021 99+




Table 13. (continued)

Problem| Code with Next Best Student's Degree of Significance
Number Best Avg. Code t value Freedom Level of
Time Difference (%)
22 OPT-CP GGP 11.06 38.56 99+
23 OPT-CP QUADGP N.A. N.A.
24 GGP QUADGP .518 6.093 98+
25 DAP GGP .854 10.33 98+
26 GGP QUADGP 2.083 4.069 90-
MCS 30.14 6.208 99+
27 GGP OPT-CP N.A. N.A.
28 MCS GGP 5.725 25.52 99+
29 OPT-CP GGP 13.62 21.23 99+
30 DAP GGP N.A. N.A. —_—
3 QUADGP MCS 1.214 11.49 80-
OPT-CP N.A. N.A.
32 DAP MCS 3.288 15.21 99+
33 QUADGP MCS 18.50 8.78 99+
34 QUADGP MCS 3.170 9.004 98+
35 DAP OPT-CP 5.344 10.55 99+




Table 14. CODE Ranking

Relative -2 -3 -4
Error 10 10 10
Ranking st | 2nd st {2nd Ist] 2nd
OPT-CP 13 |14 18 |8 14 |7
DAP 16 1 8 |5 4 |2
GGP 6 9 7 |7 318
QUADGP 10 5 5 |7 516
MCS 3 6 7 |4 13 |1
OPT-P 0 4 0 |4 0|3




Table 15A. Correlation Coefficient of log(CPU time) VS.

Number of Number of
Number of Number of Number of Degree Primal Primal
Primal Primal Primal of Multi-Term Tight Density Critical

Variables Constraints Terms Difficulty | Constraints | Constraints (% nonzero) value
OPT-P 0.8387 0.5813 0.6718 0.6664 0.551 0.5827 -0.4967 0.327
oPT-CP 0.7177 0.7774 0.8185 0.7856 0.5313 0.7449 -0.5933 0.326
OPT-TP 0.7010 0.3501 0.9255 0.8156 0.6768 0.1352 0.1024 0.475
GGP 0.7524 0.6157 0.7269 0.7079 0.6439 0.4647 -0.5499 0.327
GPKTC 0.6615 0.4333 0.8000 0.7115 0.5004 0.4094 -0.3929 0.402
DAP 0.2811 0.1402 0.4453 0.3623 0.4580 0.1384 -0.2567 0.238
QUADGP 0.4635 0.5470 0.8594 0.9064 0.6802 0.3556 -0.1436 0.350
MCS 0.4424 0.1725 0.7374 0.6108 0.4627 0.3029 0.1194 0.402
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Anpendix

OPT EPSIS 1073
EPSBD 1073
EPS 1076
CRIT 1074
BIAS EPSLS 1074 |
EPSI 1073
B
MAYNE TT 1071 i
i ALL 1076 '
FF 1076
FC ' 1071
’ RALP Qc (1) 1000
oc(2) 1072
Qc(3) . 1070 |
oC (4) 1077 q
Qc (5) .8 ,
ia
GGP EPSCON 107 h
EPSCGP 1073 E
EPSLP 10711 T
EPSPN 10711 ,
l
MCS TTOL 1073 |
YTOL 1077
DUTOL 1076
OFTOL 5 x 1073
CTOL 1073

| II........_...__.._.....iiiiiiiiiiiiiiiiiillﬁl“
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(Anpendix A continued)

TAU JL 5 x 1073
OPTOL. 1073
GPKTC ' EPSCON 1072
EPSDO 1072
BETA 1072 ;
BS 1 .

IREF 1 N

No other options !

QUADGP EPSCOV 10°° EA

| EPSTOL 1073
| . VELTOL 2 x 1078 l
EPS 1073 &
TOLCON 1074 |
EPSEQ ' 107’ |
EPSVAR 1073 '

DAP




Appendix B

Problem Number Reference

1 L.J. Mancini and R.L. Pizialli, "Optimal Design of
Helical Springs by GP," Engr. Opt., 2, 73(1976).

2 P.A. Beck and J.G. Ecker, "Some Computational Experience
with a Modified Convex Simplex Algorithm for GP," USAF,
Armanent Development and Test Center, Report ADTC-72-20,
Elgin AFB, Florida, April, 1972., Problem 1.

3 Beck and Ecker, Problem 2.
4 F. Neghabat and R.M. Stark, "A Cofferdam Design
Optimization," Math. Progr. 3, 263 (1972).
5 Problem 2 of Ref. [6]. '
6 Beck and Ecker, Problem 3. |
7 C.S. Beighther and D.T. Phillips, "Applied Geometric f
Programming,” Wiley, New Yor, 1976, p. 84. y
8 Problem 1 of Ref [6]. '
9 ‘ W. Gochet and V. Smeers, ;On theUse of Linear Programs

to Solve Prototype GP's," CORE Discussion Paper No.
7229, November, 1972,

10 V.P. Loonkar and S.D. Robinson, “Minimization of Capital
Investment for Batch Probesses,” I&EC Proc. Des. Dev. 9,
625 (1970).
1" Beck and Ecker, Problem 4A.
12 Beck and Ecker, Problem 4.
13 Beck and Ecker, Problem 5.
14 Beck and Ecker, Problem 6.
15 Beck and Ecker, Problem 7.
16 Beck and Ecker, Problem 9. ;
17 Beck and Ecker, Problem 8. |
18 Problem 2 of Ref. [19].

19 Beck and Ecker, Problem 10A




(Appendix B, continued)

{
Problem Number Reference
20 Beck and Ecker, Problem 12A.
21 R.S. Dembo, "A Set of GP Test Problems and Their Solution,”
Math. Progr., 10, 192 (1976).
22 ibid, Probtem 88.
23 ibid, Problem 8C.
24 Beck and Ecker, Problem 11. {
25 Beck and Ecker, Problem 12. {
: 26 Beck and Ecker, Problem 14A.
27 U. Passy, "Modular Design: An Application of Structural
GP," Opns. Res., 18, 441 (1970).
28 Beck and Eckar, Problem 14.
‘ 29 Beck and Ecker, Problem 13. '
30 H. Mine and K. Ohno, "Decomposition of Mathematical !

Programs and its Application to Block Diagonal GP,"
J. Math. And. Appl., 32, 370 (1970) (Problem 6 of Ref. [6]).

3. Problem 7 of Ref. [6].
32 Beck and Ecker, Problem 15.
33 J.S. Folkers, "Ship Operation and Design," in Optimization
and Design, Avriel, Rijckaert, and Wilde (eds), Prentice-
Hall, 1973.
34 M. Heyman and M. Avriel, "On the Decomposition for a
) Special Class of GP Problems,"” J.0.T.A., 3, 392 (1969).
35 Dembo, Problem 1B,
36 Dembo, Problem 1A.
37 J.G. Ecker and R.D. Weibling, "Optimal Design of a Dry ﬂ

Type Natural Draft Cooling Tower by GP," CORE Discussion :
Paper No.T610, 5-76. ;

38 J.G. Ecker, "A GP Model fo~ Optimal Allocation of
Stream Dissolved Oxygen," Manag. Science, 21, 658(1975),

loose constraints deleted.




(Appendix B, continued)

Problem Number Reference
39 ibid, loose constraints retained.
40 Beck and Ecker, Problem 16C.
41 Beck and Ecker, Problem 16. !
42 W.B. Cheng and R.S.H. Mah, “Optimal Design of Pressure

Relieving Piping Networks by Discrete Merging," AIChE. J.,
22, 4711 (1976).




Part |Il. Generalized GP Study

1. Introduction
Geometric Programming (GP) is a body of theoretical and
algorithmic results concerned with constrained optimization
problems involving a class of nonlinear algebraic functions.
The pioneering work in this field was performed by Duffin,
Peterson, and Zener [1] who developed a duality theory for

nonlinear programs, now called prototype GP's, that consist

of an objective function and upper bounded inequality constraints

involving posynomial functions, that is, functions of the form,

e N
gk(x) = z Ct It x‘:nt
t=S r=1 '
k
where all Ct >0 and the a . are arbitrary real numbers. Soon ¥

after this development, extensions of the methodology were
reported by Passy and Wilde [2) which allowed the sign restrictions I
on the coefficients Ct to be dropped and could accommodate both

upper and lower bounded inequality constraints+ Since this extension
was reported, a considerable number of applications involving E
such generalized geometric programs {GGP) have been published

(see the bibliography reported by Rijckaert [3]) and numerous

algorithms for solving both GP's and GGP's have been proposed }
in the literature (see [4] and [5] for reviews). However,
relatively little attention has been given to an appraisal of j
the computational significance of the various theoretical and

algorithmic GGP developments. This paper is the third in a

series of studies on the computational utility of GP formulations .
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and developments. The overall goals of this research has
been to determine:

i) whether the constructions resulting from GP developments
offer any computational advantages over conventional NLP
methodology

ii) which of the various equivalent GP problem formulations
are preferrable and under what conditions
iii) which GP algorithm/formulation combination is most
likely to be successful for a given problem
iv) whether a criteria can be defined by means of which GP
problem difficulty can be gauged.

While in previous two papers [6,7], these questions were
addressed in the context of prototype GP problems, the present
work will specifically be addressed to generalized GP problems.
By way of review, we briefly summarize the alternate GGP formulations
and key computationally significant features in the next section.

2. Equivalent GGP Problem Structures
2.1 The Primal Problem
The generalized GP primal problem (P) in the form initially

presented by Passy and Wilde [2] is,

Minimize: go(x)
]
Subject to: o (gm(X))om <1 m=1,..,M
x>0

where the signomial functions gm(x) are defined as

T
N 2t

zm a,
g (x) = o,C, T x
m t-Sm t tn-l n
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with specified positive coefficients Ct and arbitrary exponents
1
a:: The coefficients o, and o take on the specified values + 1

and are known as signum functions. The term indices t are defined

consecutively as,

S =1

o

Sm+] = Tm + 1
TM =T

As in the posynomial case, the difference T-N~] is referred to as the degree
of freedom of the problem.

The above problem is in general a non-convex nonlinear program
which may possess multiple local minima. A structurally more revealing
but not necessarily computationally more advantageous form of the
primal can be obtained by rewriting each signomial function as the

difference of two posynomials, i.e.

9y (x) = P.(x) - q (x)

where, P (x) =7 N
m tePm Ct T xnt
n=1 °
N a
Q,(x) = ) C, T x"nt
teNm™ n=1 n
and Pm is the subset of term indices of signomial m whose

signum functions are positive, and Nm is the subset of
term indices of signomial m whose signum functions are
negative.
As shown by Avriel and Williams [9], the generalized GP prima)
can then be written in the complementary or quotient form, (QP)

Minimize: X
o

Subject to: fm(x) < m=1,.., M+l

X X > 0




vhere each function fm(x) is a quotient of posynomials,

P_(x)
f (x) = -1 m=1,..,M

Qm(x) + 1

and fM+](x) is given by
P, (x)
fM+l(x) = Xo * QO(x)

Note that the variable Xq is simply a device used to transform
the signomial objective function to a constraint. Furthermore, the
positivity of X, is guaranteed by if necessary, including a positive
constant of suitable magnitude as one of the terms of Po(x).

Alternatively, Duffin and Peterson [9] have shown that since each
signomial can be written as the difference of two posynomial functions,
each signomial constraint can be replaced by two posynomial constraints
one of which is a lower bounded constraint. Specifically, by introducing

an artificial variable Y each constraint
Pm(x) - Qm(x) <1

can be replaced ty,

Px) <y <1+ (x)

or, g y
Y Paix) <1 and (1 +q (x))y * > 1

Therefore, at the expense of increasing the number of variables
and constraints, the signomial program can be converted to a reversed
GP, a problem in which all functions are posynomials but some are
involved in upper bounded or normal constraints while others are involved

in lower bounded or reversed constraints.
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Thus, the reversed primal GP (RP) is defined as follows,

Minimize: hy (x)
Subject to: h (x) <1 k=1,..,K
h(x) > 1 k=K+1,..,L
x <0
o, ")

where all hk(x), k=0,1,..,L, are posynomials.
Finally, Duffin and Peterson [9] have suggested continued application
of a similar construction to reduce all multi-term constraints to
two term constraints, alluding to possible computational advantages.
Thus, if ug denotes a posynomial term, then

Uy +uy +ug < 1

Could be replaced by,

(u] + u2) y;] <1 and yp *ug < 1
Moreover, the reversed constraint,

uy +u, +ug > 1
could be replaced by,

(u] + uz)y{1 21 and y, +uy > 1.

Presumably each of the four primal formulations could be solved
directly by the application of suitably specialized NLP techniques
and, presumably, one ought to be preferred over the others.

2.2 The Exponential Primal Problem

As in the prototype case, each signomial function can be recast

to a sum of exponentials via the transformation x_ = exp(zn).

n

Thus, the signomial,

o — q —



Tm N a
gm(x) ) 04Cy  Txpnt
n=i
t=Sm

can be replaced by,
9,(2) = E 0,Cy exp (Eant z,)

Whereas the original variables X, are constrained to be positive,
the z are unrestricted in sign. In the posynomial case, these
exponential functions are convex functions and use of this form of
the primal in computation proved to be much preferrable to direct
primal solution [7]. In the signomial case, the transformed functions
are in general nonconvex, hence, some of the computational advantages
may well be diminished. However, application of this transformation
to the reversed primal, results in a problem in which all functions,

hk(z) = %Ct exp (gantzn)
are convex but the feasible region is the intersection of a convex
set, generated by the inequalities

h (z)<1 k=1,..,K
and a reverse convex set, generated by the inequalities

hk(z) > 1 k=K+1,..,L

A reverse convex set is simply the complement of a convex set.
The exponential form of the reverse primal thus clearly reveals the
underlying structure of GGP problems and clarifies the reason for
the possibleoccurrence of multiple local minima.

2.3 The Transformed Primal Problem
The exponential form of the reversed primal, can with the further

change of variable,

W= AT Z + Inc
Y] 4" v




where A is the matrix of primal variable exponents and Inc the
N

vector of logs of the term coefficients be rewritten to the transformed

primal form,

Minimize: ho(w)
Subject to: hk(w) <1 k=1,..,K
n,
h (W) > 1 k=k+1,..,L
n,
L(w-Inc) = 0
N, n,
where, Tk
h(w) =} et
t=Sk

and, as in the prototype case, the rows of the matrix L are any set

of linearly independent vectors spanning the null space of A [10].

This form of the primal offers very attractive structural features

for computation, but it is not clear whether the considerable increases

in variable and constraint dimensionality which these transformations

impose are adequately compensated by increased computational efficiency.

2.4 The Dual Problem
As shown in [3], the GGP problem has associated with it a dual

problem, (D)

T C, o8, H 1

1
Extremize: v(§) = ol {n (3;0 tt i x;mxm}oo

t=1 t m=1
Subject to: T
0 1
) 0t6t =0
t=1
;
o, a_,86,=0 n=1,.,N
£ t ntt
§ >0
A"
A>0
N A"
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s

T

Tm

_ 1
Ag = Op L 0p84
t=Sm
7 min go(x)

e % Timin g, (]

where,

Although relationships between primal and dual variables at
corresponding stationary points can again be given, as in the prototype
case, the bounding relationship between the primal and objective functions
no longer holds. Hence, maximization of the dual must be replaced
by a search for dual stationary points [3]. These properties of the
dual are made quite apparent if the primal is formulated in the reversed
GP form. In that form, it becomes clear that In v(8) is concave with
respect to the dual variables associated with upper bounded constraints
and convex in the dual variables associated with Tower bounded constraints
[9]. Solution of the dual thus amounts to Tocating equilibrium or
saddle points. This feature disallows direct maximization and thus GGP
dual solution requires numerical solution of the Lagrangian conditions
applied to the dual. As in the prototype case, however, this approach
must be used with great care because of difficulties presented by vanishing
dual variables [5].

2.5 The Transformed Dual Problem

A reduction of the generalized dual to a transformed dual similar
to that developed for prototype GP's [1], can also be carried out and
is reported in {9]. This transformation does not, however, ameliorate
the difficulties posed by the search for saddlie or equilibrium points.

Numerical solution of the Lagrangian condition appears to be the only

route for solving GGP's via the transformed dual.
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3. Solution Approaches

The solution methods proposed for generalized GP's have generally
been of two types: sequential methods employing a series of approximating
problems and direct approaches to one of the equilvalent GGP forms.
Available fragmentary evidence indicates that the sequential methods .
are superior to direct approaches.
3.1 Sequential Minimization

The QP and RP forms of the primal suggest that if the denominators

and reversed constraints, respectively, could be replaced by approximating

single term posynomials, then the resulting approximating problems
would reduce to prototype GP's. Such‘approximations can readily be
obtained via the condensation device proposed by Avriel and Williams
[8] and Duffin [11].

T
Given a posynomial, P(x) = Zut(x), and a set of non-negative,

t=]
normalized parameters Oy s t=1,..,T, then from the inequality between

the arithmetic and geometric means, it follows that

t ‘o, 2
t y
Thus, a multi-term posynomial P(x) is approximated by a single term ?ﬂ

n,
posynomial P(x,a). Using this construction, Avriel and Williams [8) have i

P(x) = Zut(x) > 1 (ut)at - ;(x,u) (1)
t

proposed replacing the constraints of a QP,

P, (x) ;
fm(x) = W <1 ,

with the approximation,

£ = P(x) (Qx o)) <y

9
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Similarly, Duffin proposed replacing the reversed constraint
h (x) >1
with the posynomial approximation,
v
-1
(hk(x]a))
Note that since inequality (1) is an equality if and only if,

<1

o = ut/Zut, the parameters ay of the approximating functions are

in both the QP and RP cases updated by setting,

a = e e——

where xk'] is the solution of the k-1 st approximating problem. Thus

a series of approximating problems is generated and solved until, the
difference
(at - atk'])
becomes sufficiently small for all t. It can be shown [8] that,
(i) any feasible point of an approximating problem will
also be a feasible point of the GGP
(ii) the sequence of approximating problem solutions will
converge to a local minimum of the GGP under mild assumptions
It can further be shown [12] that condensation of P(x) is equivalent to
a Taylor series linearization of 1nP(x) with respect to the variables
1nxn. Thus condensation may be viewed as a special type of partial
linearization. The advantage of condensation as opposed to direct
Taylor series linearization is that it leads to a closer approximation

of the original posynomial [12].

Note that since,

a
MU % _me,mx™ % mte, % nx Mnt%t
(=) = th'n = t nt s
tia, t-—) (770)
t + t
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the condensation calculation will result in changes in the exponent
matrix of the variables. To avoid recomputation of the exponent
matrix, Duffin and Peterson [13] have proposed an alternate condensation
construction which employs the harmonic mean. Using this construction
the reversed inequality,

Xut 2
is replaced by the approximation,

Zai(ut)-] > 1
where the ut's are updated as before. It can be shown [13] that the
harmonic mean condensation of a reversed constraint can always be

bounded by the geometric mean condensation,
Jug > 1 (;%)at_z[fai(ut)-llg]l

Thus, the savinds in exponent matrix recomputations are obtained
at the price of poorer approximating functions.

These alternative primal approximation schemes reduce the solution
of GGP's to the solution of a series of prototype GP's but leave open
the choices of which prototype formulation to solve and what solution
algorithm to use. Proposals which have been made include:

i) solution of the exponential form of the primal using
Kelley's cutting plane method [14].
i1) solution of the transformed using successive quadratic
programming construction [12].
1i1) solution of the transformed primal using a form of reduced
gradient method which employs an active constraint strategy
to accommodate nonlinear inequalities [10]
iv) solution of the dual in which the linear dual constraints

are used to explicitly eliminate variables. Templeman, et.al.
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(15] used condensation of the QP form and a modified conjugate
gradient method. Jefferson [16] chose the harmonic mean
approximation of the RP and a modified Newton method.

In principle, any approach suitable for prototype GP's can be
employed in conjunction with condensation constructions including
direct minimization of the primal approximating problem.

3.2 Direct GGP Solution

Direct approaches to the solution of GGP's can be of two types:
direct minimization of one of the primal forms (P, QP, RP, exponential,
or transformed) or solution of the Kuhn-Tucker conditions corresponding
to one of the GGP formulations. For instance, Lasdon, et.al. [17]
reported on the use of GRG for direct primal minimization with some
success. Rijckaert and Martens [18] developed a specialized Newton-
Raphson adaptation to solve the Kuhn-Tucker conditions of the primal
in exponential form. The linearized equations employed in the N-R
iterations were generated using the condensation construction. Blau

and Wilde [19] solved the Kuhn-Tucker conditions of the dual using a

specialized N-R method which exploited the structure of the linear/
log-1inear equation set to reduce the set of iteration variables.

In all of these approaches to the solution of GGP's,no attempt
was made to locate global minima. Attempts along these lines were
reported by Passy [20], Falk [21], and others using branch and bound
procedures. However, no generally available software seems to have

been produced as yet.
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4, Scope of This Study

Three previous comparative studies of generalized GF solution approaches
have been reported in the literature. The study by Rijckart and Martens [22]
is the most comprehensive of the three. It involved 16 generalized GP test
problems, used up to five starting points for each test problem, and investi-
gated both direct and sequential approaches. The direct approaches involved
various Newton-Raphson strategies applied to solving either the exponential
primal, the dual, or the transformed dual Lagrangian (Kuhn-Tucker) conditions,
The sequential algorithms considered included SIGNOPT [15], GPROG [16] and
GGP [24]. The reported results indicated that the direct Kuhn-Tucker condition
solver GPKTC [25] and the sequented minimizer GGP were fastest and most robust,
While it is an important contribution, the study was flawed in that different
starting point generation procedures were employed for different codes and in
that the time to achieve a specified relative error between successive iterates
rather than the deviation from the known solution was used as ranking criterion.
Furthermore no attempt was made to extract information about the relative com-
putational advantages of the alternative GGP formulations.

The study reported by Dembo [5] involved six generalized GP problems solved
using a single starting point. The codes employed were GGP, GPKTC, GPROG, sev-
eral additional specialized codes representing alternate implementations of the
same sequential strategies, as well as five general NLP codes applied directly
to the generalized GP primal. Again GGP and GPKTC emerged as fastest and most
robust. The test problems were run by the code authors on their own machines;
allowing tuning of programs by the authors; but requiring that the solutions
meet fixed tolerances. Solution times were reported using Colville Standard
times. The use of Colville standardized times is known to lead to considerable

error [26] as is the use of single starting points [7]. Hence, the results of

this study must be accepted with considerable reservation.

e
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The study by Dinkel, et al. [23] investigated the relative advantages of the
use of geometric mean condensation with the QP and RP forms and harmonic mean
condensation with the RP form., The posynomial subproblems were solved using
a Newton-Raphson method applied to the transformed dual. Twelve problems were
employed and each was run with a single starting point. The conclusion was
drawn that the difference between geometric mean condensation applied to the
QP form and the RP form was insignificant. The harmonic mean approximation
was found to be inferior. This performance was attributed to the increased
dimensionality of the subproblem obtained using the harmonic mean and the poorer
approximation to the reversed constraints which that approximation vields. A
similar conclusion was reported by Bradiey [12] on the basis of limited testing
using this transformed dual based code.

In this study we will seek to rectify some of the experimental inadequacies
of the previous studies. Twenty five generalized GP problems will be solved in
both their signomial and their RP forms; using up to 20 different starting point
replications; code timing will be obtained at several precise error levels ex-
cluding phase I procedure overheads. A series of experiments will be included
which will allow investigation of primal formulation effects and of the relative
merits of direct primal minimization versus sequential minimization.

Appropriate statistical tests will be used in the performance comparisons and
the correlation between solution time and various problem characteristic dimen-

sions will be tested.

5. Experimental Procedure
5.1 Test Codes
Five test codes are employed in this study. The four specialized

codes GGP [24], GPKTC [25], QUAPGP [12], and DAP [10] as well as the general
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NLP Code OPT [27]. The first two codes were selected because of their superior
performance, relative to other specialized GP programs employing the direct or
sequential strategies, in previous studies [5,22]. The second two codes were
selected because of their successes with posynomial problems in reference [7].
These four codes basically span the range of solution approaches:

i) sequential solution using convexified (exponential) primal subprob-

Tems (GGP)

ii)  sequential solution - using transformed dual subproblems (QUADGP)

iii) sequential solution using transformed primal subproblems (DAP)

iv) direct solution of the Kuhn-Tucker conditions of the exponential

primal (GPKTC)

Moreover, the sequential codes empioy between them all three condensation
formulations:

i) GGP employs the QP form and geometric mean condensation

ii)  QUADGP has the option of either employing the QP form and geometric

mean condensation on the RP form and harmonic mean condensation

iii) DAP employs the RP form and geometric mean condensation.

The general purpose GRG based NLP Code OPT was selected because its super-
ior performance in a general NLP comparative study [28] as well as its outstanding
performance in solving posynomial problems in our earlier study [7]. A round
of tests were carried out using the successive LP code RALP and Method of Mul-
tipliers Code BIAS used in the posynomial study [7]. However, as in that study,
these codes proved to be significantly less effective than OPT and, hence, no

results with these codes will be reported.

5.2 Test Problems

For purposes of this study, a set of 25 generalized GP test probiems was

selected from among those reported in the previous comparative studies [5,22,23],

e L s Pt o o, Kttt o i
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various engineering applications discussed in [9] or referenced in [3], and
unpublished problems available to the authors. The characteristic dimensions
of these problems are summarized in Table 1.and the problem formulations are
given in Appendix A. As evident from the Table the problems range from 4 to

16 primal variables, 1 to 12 multi-term constraints, and 6 to 69 primal terms.
Problems with less than 4 variables were excluded because in the posynomial
study such problems often did not yield meaningful comparative data. With short
run times, program overheads dominate the rankings. The upper end of the test
problem size range was limited by the size of the RP form which could be accom-
modated by some of the codes. In transforming a signomial problem to RF form,
two variables, two constraints, and two terms are added to eliminate a signomial
objective function and one variable, one constraint, and one term are added in
converting each signomial constraint. Consequently, as shown in Table 2, trans-
formation will frequently more than double the exponent matrix size (e.g. see
problems 3,8,14,19,24-26). A1l of the codes used in this study are written for
dense matrices and do not employ storage saving (sparse matrix) methods. Thus,
in the posynomial study [7], problems with exponent matrices exceeding 2000
elements typically could not be run within the 150 K octal word memory limit

set on the Purdue system, As it is, several of the 25 problems could not be

run in RP form,

5.3 Testing Conditions
The basic testing procedure followed that employed in the companion study
[7]; hence, it will be reiterated here only in outline. The key elements of
the experimental design are the use of:
i) Fixed code parameters.
After selective tests to study the effects of code parameters, a

fixed set of parameters was chosen for use in all subsequent testing.
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1ii)

iv)
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The code parameters are given in Appendix C.

Feasible starting points.

In order to separate algorithm performance from the effectiveness

of various phase I procedures, only feasible points were used.
Admittedly, in practice the costs of generating starting points can
be significant; however, a thorough investigation of this question

is a major study in itself.

Multiple, randomized starting points.

As in [7], up to 20 starting points were generated for each test
problem both in the signomial and the RP form. The points were gen-
erated by random sampling from the surface of an N-dimensional sphere
whose center is the actual problem optimal solution. Normally, two
different radii were used and only the feasible points retained.

In some cases, because the feasible region was very tightly constrained,
it was not possible to generate a full compliment of sufficiently
distinct feasible points even after 1000 sec Cpu time (CDC 6500).

In such cases a third, shorter radius was used. The number of start-
ing points used for each problem in its signomial form are summarized
jn Table 3A; the number used for the RP form in Table 3B.
Pseudo-Lagrangian error function to measure sclution accuracy.

The function used is,

n * n *
9, -~ ¢ * 9. -
ABS[(-25—2 ) + T A ABS (T )]
g0 m g0

where g;, g;, A; are the values of the objective function, constraints,

and multipliers at the optimum,

The sum over m only includes the constraints active at the optimum

solution.
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v) Performance data accumulation at specified error Tevels,
Intermediate solution times were obtained at error function values

2 1073, 107", and 1077,

of 10° Means and standard deviations were
computed for the runs with each code-problem combination.

As described in [7], the testing, data accumulation, and statistical analy-
sis of the resulting performance data were automated to a large degree using
appropriate pre- and post-processing programs, as well as an efficient system
of problem, starting point, intermediate result, and reduced data files. A
typical intermediate data summary for a test problem run is shown in Fig. 1.
Note that mean times and standard deviations are calculated only for successful
runs. All runs were carried out on the Purdue University dual CDC 6500 System

with its MACE operating system using the MNF (Version 5.3) compiler.

5.4 Test Runs

The runs were grouped into two main test series; alternate minimization
strategies employing OPT and solution using the specialized GP codes. The OPT
runs were grouped into two sub-series, identified as follows:

A) Direct Minimization

1. Signomial form of the primal (OPTPD)
2. Signomial form of the exponential primal (OPTCPD)
3. Signomial form of the transformed primal (OPTTPD)
4, Reversed form of the exponential primal (OPTCPR)
B) Sequential Minimization
Sequential Solution of the RP using convex (exponential) primal sub-
problems (OPTCPS)

The specialized generalized GP runs consisted of the following:
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1. Direct solution of the exponential primal KT conditions (GPKTC)

2. Sequential solution of the QP using convex primal subproblems (GGP)

3. Sequential solutions of the transformed primal (DAP)

4, Sequential solution using transformed dual subproblems in two series:
QP form and geometric mean condensation (designated BRADAW) and RP
form using the harmonic mean condensation (designated BRADHA).

A total of ten test series will thus be reported.

6. Results
6.1 Primary Data

The primary data for the ten test series can be condensed to four tables.
Table 4 indicates the number of runs attempted and successfully solved for each
series. A run was deemed successful if it reached the 10'2 error level. A run
was 12belled unsuccessful if either it did not reach the 10'2 error level or

the problem could not be run because the memory requirements exceeded the 150K

octal maximum allowed on the Purdue University system. As evident from the Table

there were 338 possible runs per series if the code used the signomial form input

files and 274 possitle runs per series if the code used the RP data files. The
smaller number in the RP case arises because the increased size of the PR form

problems prohibited solution of some of these problems (8,24,26) or forced a

reduction in the number of sufficiently different starting points which could be

generated.

The most startling result evident from the table is the generally higher
level of unsuccessful runs, especially by the specialized codes, when compared
to the % unsuccessful attempts obtained in the posynomial study [7]. For in-
stance, GGP 8.0% versus 4%; GPKTC 51% vs. 41%; DAP 90.5% vs. 3.5%; and, QUADGP
60% vs. 9%. The OPT runs also exhibit this trend: primal solution 27.8 vs.

6.8%; convex (exponential) primal 3.3% vs. 0.16%; and transformed primal 38.8%
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vs. 27.4%. These results seem to indicate that the non-convexity of the sig-
nomial problems does in fact make them more difficult to solve. This conclu-
sion is a tenuous one, however, because the signomial problems used in this
study may simply constitute a subset of more difficult problems and thus may
not be representative of the class as a whole.

The mean times in CP seconds and number of successful runs upon which these
means are based for the ten series are given in Tables 5A, 5B, and 5C. Results

2 4

are separately tabulated for the 10°°, 1073, and 10”% error leads. Results are

not shown for the 10'5 error level because with the code parameter values selec-
ted in this study most runs terminated at error levels between ]0'4 and 10'5.
As can be seen from Tables 5A through 5C, two problems (24 and 28) could
not be solved by any code from any starting point. Moreover, several problems,
noteably, 8,14, and 18, were only solved in a few of the series. A cursory
study of the mean times indicates that GGP generally performed best, followed
by OPTCPD, with occassionally very good times by the QUADGP series, BRADAW and
BRADHA, Standard deviation values corresponding to the reported mean times are
not listed separately. However, they are used in the Student's t tests, the
results of which will be detailed later. Since standard deviation values ty-

pically ranged from 50% to 10% of the magnitude of the mean, a rigorous comparison of

mean solution times must take the standard deviations into account.

6.2 Analysis of Primary Data

In order to compare the mean times of alternate run series, a modified
Student t test was employed as described in [7]. This test assumes that the
solution times for two series for any given problem are normally distributed
each with its own variance. Code time comparison is then equivalent to testing

whether the true mean times are equal. A 90% significance level will be required

bofore means will be considered to be different. These comparisons will be
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presented in six groupings:
1. OPT Direct Primal Form Minimization

! 2. OPT Strategies involving the Exponential (Convexified) Primal

3. Convexified (Exponential) Primal Strategies

4, Harmonic vs. Geometric Means

5. Transformed Primal Strategies

6. Overall Comparison

For the first set of comparison, the three series in which OPT is used
to directly minimize the signomial problem in its primal, exponential primal, L
and transformed primal form will be considered. As shown in Tables 6A, 6B,

6C at the 10'2, 10'3, as well as the 10'4 error levels, the exponential primal ,

i approach is faster at virtually 100% significance level in 23 out of 23 cases, i‘
20 out of 22 cases, and 15 out of 18 cases respectively. This dominance is f%
quite substantial: from Table 5A, for instance, the ratio of mean times of %?
OPTPD/OPTCPD is always at least 2, often 5 or more, and sometimes 10 or more. ‘j
These results are similar to those observed in the posynomial case. E

In the next set of comparisons, the three OPT series involving the use j
of the exponential primal form in direct signomial solution (OPTCPD), direct 33
reversed posynomial solution (OPTCPR) and sequential reversed posynomial solu- q
tion (OPTCPS) wi]] be tested. From Tables 7A, B, and C it is evident that at ¥
all three error levels direct signomial solution dominates: in 23 of 23 cases
at 10'2, in 20 of 21 cases at 10'3, and in 15 of 18 cases at 10'3. This also
is not surprising in view of the larger dimensionality of the reversed form
relative to the signomial form. For problems with larger dimensionality differ-
ences (3,5,10,14,18,19,20,21,25) the mean time ratios often exceed four. It
is, however, interesting to note from Tables 5A, B, and C that the sequential

and reversed times are generally fairly close to each other. Since, the OPT

sequential implementation does not take advantage of the single term constraints
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generated by condensation, this indicates that sequential solution can readily
be made more efficient than direct solution.

A cross comparison of three series which use the exponential (convexified)
primal: the OPT Sequential series which uses the RP form, GGP which uses the
QP form for sequential solution, and GPKTC which solves the Kuhn-Tucker condi-
tions is given in Tables 8A,B,C. GGP dominates overwhelmingly with OPTCPS gen-
erally second. GPKTC does not appear to be competitive, primarily because of
frequent failure to converge. When it does converge, it apparently has no diffi-
culty achieving high accuracy solutions. Note that the principal difference
between GGP and OPTCPS lies in the dimensionality of the convex primal subproblem
which is solved and in the treatment of single term constraints. Because GGP
uses the QP form while OPTCPS uses the RP form, the GGP condensed subproblem
will always be smaller in both variables and number of constraints. Moreover,
in GGP single term constraints are converted and treated directly as linear
constraints while in OPTCPS this was not done. This comparison thus clearly
indicates that condensation of the QP form is to be preferred.

Next we compare the difference between condensation using the geometric

mean and condensation using the harmonic mean. In series BRADAW and BRADHA,

the solution of the posynomial subproblems is carried out in the transformed
dual using QUADGP. As evident from Tables 9A, B, and C, the performance of the

two strategies is generally similar despite the differencer in the dimension-

ality of the associated subproblems. The geometric mean series dominates in

10 of 17 cases at the 10'2, level, 9 of 14 cases at the 10'3 level, and 8 of 13

cases at the 10"4 level. Thece results seem to anomalous in view of the substan-

tial dominance of the geometric mean approach reported in [23] and [12].

Next, the two transformed primal series are compared. DAP uses the trans-

formed primal and condenses the reversed constraints. In the OPTTPD series the
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transformed primal is minimized directly., Tables 10A, B, and C indicate that

2 3

OPT is faster in 12 of 21 cases at the 10°° level, 12 of 19 cases at the 10~

level, and 10 of 14 cases at the 10'4

level. This despite the fact that DAP
exploits single term constraints. In general DAP proved unreliable in solving
signomial problems, in startling contrast to its performance in the posynomial
study.

Finally, we will use the Student t test to perform an overall comparison
of all ten series. As shown in Tables 11 A, B, and C, the GGP, OPTCPD and the
QUADGP series dominate the rankings. GGP is first in 13 of 23 cases at the

2 4

107 level, 12 of 23 cases at 10'3, and 10 of 21 cases at 10" '. The performance

of the two QUADGP series (BRADAW and BRADHA) i$ quite close: when one is first, the

other invariably is a close second. It is important to note, however, that the
problems in which the QUADGP times rank first are precisely those in which the
degree of freedom of the condensed problem is much less than the number of primal
variables. Specifically, for problem 1, the condensed degree of freedom is 1;
for problem 15, it is 1; for problem 16, 3; for problem 17, 4; for problem 20,

2; and for problem 21, it is 4, For the other problems the degree of freedom is
much larger than the number of primal variables and for none of these is QUADGP
competitive with GGP or OPTCPD. In view of this factor and from the summary
given in Table 12, it appears that OPTCPD can be ranked second on the basis of
its numerous second best times, while QUADGP is third only in the basis of the

above six problems.

6.3 Effect of Problem Dimension on Solution Time
To help clarify which generalized GP problem characteristic could best be
used as measure of solution difficulty, correlation coefficients were computed

between the problem solution time and each of eight problem characteristics.
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Since each such correlation coefficient only involves data from the same code
run with the same set of program parameters, the mean termination time of a run
was used as the characteristic problem solution time. The resulting correla-
tion coefficients are summarized in Tables 13 and 14, 1In the former it is
assumed that time is to the exponential of the particular problem character-
istic; in the latter, a direct lTinear relation is assumed. The last column of
both Tables tists the critical correlation coefficient value for a 0.05 signi-
ficance level.

From the tables it is evident that for direct primal solution (OPTPD), there
is a stronger correlation of time to the exponential of the number of primal
variables and number of multi-term constraints than to the corresponding linear
relationships. Moreover, the correlation is considerably higher to the number
of multi-term constraints than to either the total number or number of tight
constraints. On the other hand, the linear correlation to the number of primal
terms and negative terms is stronger than the exponential. The correlation
to the number of terms apparently reflects the effort involved in function eval-
uations, while that to the negative terms could well reflect some measure
of the difficulty introduced by these non-convex elements.

For direct exponential primal solution (OPTCPD), the exponential form
correlation coefficients for the number of variables, number of multi-term con-
straints, and number of tight constraints are highest and very nearly equal.

The linear coefficient is higher than the corresponding exponential only for
the number of negative terms. The correlation to the number of terms weakens,
possibly because in the exponential primal term evaluations are less time con-
suming.

The reversed exponential primal (OPTCPR) correlation coefficients are highest

for the exponential of the number of variables, number of multi-term constraints,

g
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and number of primal terms. The first two correspond to the results obtained
for the primal and exponential primal. The reason for the emergence oV the
latter is not obvious. Also, anomalous is the negative correlation coefficient
for the number of tight constraints. The strong linear correlation to the
number of reversed constraints apparently indicates that this measure of non-
convexity is a significant measure of problem difficulty, since its value is
much larger than the linear coefficient for both total number of constraints
and number of multi-term constraints.

The transformed primal results indicate very strong correlation to the
number of terms and degree of difficulty. Since the latter is related to the former,
the number of terms is clearly the significant parameter. The total number of
constraints also nas a stronger exponential correlation, while the number of 1
reversed constraints has a stronger linear correlation. These results are reas- '
onable because, in the transformed case, the number of actual problem variables
is equal to the number of terms. In this case, the number of reversed constraints
also apparently acts as measure of problem difficulty arising from nonconvexities.
Thus, the results for the transformed and reversed primal complement each other
in this regard.

For sequential transformed dual solution (BRADAW) the key exponentially
related properties are the degree of difficuity and the number of primal terms.
The latter is equal to the number of transformed dual constraints wh. 2 the
former is a measure of the number of transformed dual variables. The strongest
linear correlation is to the number of primal constraints. This is not unreas-
onable.since the number of primal constraints does not directly influence the
dimensionality of the transformed dual - it only adds to the complexity of the
objective function. Anomalously, although the problem negative terms impose

the need for sequential solution, the correlation with respect to that para-

meter is not significant.




57

For direct solution of the exponential primal Kuhn-Tucker conditions
(GPKTC), the correlation is strongest to the exponential of the number of primal
variables, constraints, and multi-term constraints. Since the primal variables
and linearization weights for the multi-term functions are the primary iteration
variables in the Newton-Raphson alcorithm, the observed strong correlation can
be rationalized. The stronger linear correlation to the number of primal con-
straints may reflect the fact that the constraint multipliiers are less signifi-
cant variables in the iterations since they enter linearly.

Finally, consider the sequential approaches using convex primal subproblems.
The sequential QP series (GGP) indicates a strong exponential correlation to
only the primal variables. Curiously there is no significant correlation to
either the number of negative terms or the number of tight constraints. In the
sequential RP series, the correlations to the number of primal variables and
multi-term constraints are strongest for the exponential relation, while those
for the number of constraints, number of primal terms, and number of reversed
constraints is strongest for the linear relation. These results are consistent
with those obtained for direct signomial exponential primal and reversed expo-
nential primal solution. The stronger linear correlations to the number of
reversed constraints again suggests that this parameter may be a valid measure

of generalized GP problem difficulty.

7. Conclusions

On the basis of the results of this comparative study, it can be concluded
that, given the computational state of the art represented by the test codes
employed in this study, the preferred solution approach for generalized GP's

involves the following elements:

¥
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i) use of tne quotient form of the signomial functions

ii)  condensation of the denominators of the quotients using the geometric

mean construction !
jii) solution of the condensed subproblems in their convexified primai form.

The best method which should be employed fcr the subproblems minimizations

is not obvious from the results of this study. The Kelley's Cutting Plane method
employed by the best code in this study (GGP), obviously performs superlatively.
However, in the posynomial study [7], the general purpose GRG Code OPT proved

at least as effective as GGP in solving prototype GP problems even without incor-
porating devices appropriate for GP's which would enhance its effectiveness.

A separate test series in which OPT was used within a strategy employing the
above three elements was not executed in this study because, on the basis of the
evidence accumulated, the results were clearly predictable. Hence, the cost of
developing additional problem formulation files and conducting another full !

test series was not justifiable. Since direct OPT minimization of the exponen-

tial primal was second only to GGP in effectiveness and since sequential OPT
minimization of reversed exponential primals was at least as effective as direct

minimization of revérsed exponential primal, it follows that sequential QP mini-

[ ST S

mization using OPT will be competitive with GGP.

It is furthermore clear that a variation of the above strategy which com-
bines quotient form condensation with transformed dual subproblem solution will
be effective for problems in which the degree of freedom is much smaller than
the number of primal variables. Since in practice it is normal to impose upper
and lower variable bounds and multiple constraints when formulating models, the
practical significance of the above subclass of generalized GP problems appears

to be small.

The correlation coefficient analysis performed in this study indicates that h

the primary exponentially correlated problem characteristic is the number of
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variables in the problem formulation being solved. Ffor primal approaches the
number of multi-term constraints also is strongly exponentially correlated. Ffor
signomial form problems solved in the various primal formulations, the solution
time is strongly correlated to the number of negative terms. For reversed
posynomial problems solved in the various primal formulations, the solution time
is generally strongly correlated to the number of reversed constraints. It

thus appears that in judging the difficulty of a generalized GP the number of
varjables and multi-term constraints is more significant than the number of

negative terms or reversed constraints.
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PROBLEM 14-1

OBJ FUNC = ~3,77970732E+02

ERF
3.10859262E-06
=4.35963677E~0S
=-4.95658933E-06
8.81929268E~05
4.09208848E-06
6.62356564E-06
8.00077784E-06
3.98681867E-0S
3.080130S6E-0S
2.25150681E-05
FINAL UALUES,
FINAL UALUES.,
FINAL UALUES,
.01000
.00100
.00010
.0000%

Fig. 1.

NO. PTS.= 10
NQ. PTS.= 10
NO. PTS.= 8
NOg. PTS.= |}

TIME
1.18560000£+01
1.04100000E+01
1.31630000E+01
1.21470000E+01
1.20060000E+01
1.12550000E+01
1.17980000E+01
9.36600000E+00
1.19790000E+01
1.41390000E+01

AVE.ERROR = 1.5475S0555E-05 STAN. DEV.
A.AVE.ERRDOR = 5.75644B633E-05 STAN. DEV.
RUE.TIME = 1.18120000E+01
MEAN TIME= 5.41581661E+00
MEAN TIME= 7.22800845SE+00
MEAN TIME= 8.20045084E+00
MEAN TIME= 8.61237092E+00

A. ERF
6.33999008E-06
1.02675373E-04
3.86761749E-05
1.84564869E-04
2.56980454E-05
1.52060806E-0S
1.62907410E-0S
7.93403142E-05
6.18276S87E-05
4.50254447E-0S

STAN. DEV.

62

3.41488945E-05
5.40654154E-0S

1.31988021E+00
STANDARD DEU.= B8.B6457SS16E-01
STANDARD DEV.= 9.5671725SE-01
STANDARD DEV.= 1.1881590BE+00
STANDARD DEV.= 0

Typical Intermediate Result Summary for a test Problem run.
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TABLE 3A. STARTING POINT REPLICATION SUMMARY
Signomial Form

Problem Number of Starting Points
Number Set 1 Set 2 Set 3
1 10 10
2 10 10
3 10 10
5 10 10
6 10 10
7 10 9
8 0 2
9 10 10
10 10 3
n 10 10
12 1 10
13 10 10
14 10 4
15 10 10
16 10 5
17 10 10
18 0 0 2
19 1 5
20 1 1
21 ] 1
22 10 9
23 10 10
24 0 0 2
25 10 0
26 2 2 1




TABLE 3B. STARTING POINT REPLICATION SUMMARY
Reversed Primal Form

Problem Number of Starting Points
Number
Set 1 Set 2
1 8 10
2 10 2
3 10 10
5 10 10
6 1 1
7 10 9
g* - -
9 10 4
10 1 3
" 10 10
12 1 10
13 ] 4
14 10 4
15 10 10
16 10 5
17 10 10
18 2 0
14 1 S
20 1 |
21 1 1
22 10 8
23 10 10
24% - =
25 10 0
26* - -

*
Problem too large

66




Table 4: Number of Solutions Attempted and Solved

Test Series

GGP
GPKTC
DAP
BRADAW
BRADHA
OPTCPS
OPTCPD
OPTCPR
OPTPD
OPTTPD

Runs
Attempted

338
274
274
338
338
274
338
274
338
338

Runs

Successful.

mn
134

26
136
135
174
327
201
244
207

% Unsuccessful

Attempts
8.0
51.1°
90.5
59.8
60.1
36.5
3.3
26.6
27.8
38.8
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Transformed Primal Strategies

Student t Comparison:
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Error Level
Ranking
Series

GGP
GPKTC
DAP
BRADAW
BRADHA
OPTCPS
OPTCPD
OPTCPR
OPTPD
oPTTPD

] Table 12:

Frequency
1072 19
Ist 2nd Ist

13 2 12
0 0 0
1 0 0
3 5 4
4 2 3
0 0 0
4 13 5
0 0 0
0 0 0
0 1 0
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APPENDIX A
89
Test Problem File: Signomial Form

PROBLEM MO 1 [22], No. ! 1
MININIZE ‘
CO(X) = - (X1) + 0.400000(X1#® 0.67)(X3%e-0.67) |
SUBJECTED TO: p
G1(X) = 0.058820(X3)(X4) + 0.100000(X1) <= 1 |
3

C2(X) = 4.0000(X2)(X4nn=1.00) + 2.0000(X2##-0.71) (X4wa—1.00)
+ 0.058820(X2w#-1,30)(X3) <= 1 q
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PROBUEM MO 2 [4), Section 11.2 :
MINIMIZE 1

GO(X) = 861000.(X1w» 0,50) (X2)(X3#e~0,.67) (X44»~0.50)
+ 36900.(X3) + 7.7E+008(X1e#-1,00)(X2%» 0.22)
= 7.7E+008(X1wa-1,.00)

SUBJECTED TO: ‘

Gl(X) = (X2e8-2,00)(X4) + (X2ee-2,00) <= } i




PROBLEM NO 3 private files ;
MINIMIZE

GO(X) = (Xlwe 2,00) + (X2e= 2.00) + 2.0000(X3s# 2.00) + (X4»e 2,00) - 5.0000(X1) i
- 5.,0000(X2) - 21.0000(X3) ~ 7.0000(X4) i

SUBJECTED TO:3

G1(X) = 0.125000(Xiww 2,00) + 0.125000(X2== 2,00)
+ 0.125000(X3#» 2,00) + 0.125000(X4w» 2.00) I
+ 0,125000¢(X1) - 0.125000(X2) + 0.125000(X3) + 0,125000(X4} <= 1

GE(*) s 0,100000(X1#» 2,00) + 0.200000(X2#« 2.00)
+ 0.100000(X3»# 2,00) + 0.200000(X4#» 2,00)
- 0,100000(X1) + 0.100000(X4) <= |

G3(X) = 0.400000(X1#» 2,00) + 0.200000(X2*= 2,00)
+ 0.200000(X3»« 2.00) + 0.400000(X1) - 0.200000(X2) ‘
+ 0.200000(X4) <= 1}

G4A(X) = 0,000100(Xinn=-1,00) <= |
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PROBLEM NO S [5], No.2

MINIMIZE @

GO(X) = S5.357B(X3w» 2.00) + 0.835700(X1)(XS) + 37.2392(X1)

SUBJECTED TO:

C1(X) = 2.BE-00S(X3)(XS) = B.7E-00S5(X2)(XS) - ?.3E-00S5(X1)(X4) (= §

Ga(x) =

G3I(X) =

G4a(X) =

G5(X) =

GB(X) =

G7(X) =

GB(X) =

GI(X) =

G10(X) =

GL1(X) =

Gl2(X) =

Gi3(X) =

Gl4(X) =

GIS(X) =

GlE(X) =

0.000853(X2) (X5) + 9.4E-005(X1)(X4) - 0.000331(X3I(X3) <= 1

1330.33(X2en—1.00) (XS#»-1,00) - 0.420000(X1)(XSe=-1,00)
= 0.305860(X2u%—1,00)(X3%# 2,.00)(XSww—1.00) <= 1

2275.13(X3%%-1,00) (XS##-1,00) - 0.266B00(X1)(XS#=-1,00)
= 0.405840(X4) (XSw»-1.00) <= 1

0.000242(X2)(X5) + 0.000102(X1)(X2) + 7.4E-00S(X3%a 2,00) <= |}

0.000300(X3)(XS) + 8.0E-005(X1)(X3) + 0.000122(X3)(X4) <= |

78.0000(X1ea-1,00) <= |

0.009304(X1) <= 1

33.0000(X2#w~1,.00) <= 1

0.022222(X2) <= 1}

27.0000(X3#»~1,00) <= |

0.022222(X3) <= |}

27.0000(X4nu-1,00) <= 1|

0.022222(X4) <= 1

27.0000(XSe#-1,00) <= |

0.022222(XS) <= |

e e g =




sRomEn N0 6 private files

MINIMIZE @

GO(X) =

Gl(X) =

G2(X) =

G3(X)

Gea(X)

GS(X)

Se(X)

GP(X) =

GB(X) =

GI(X) =

G10(X) =

0.002496(X1) (X3us-]1,00) (X4) + 0.001B86(X1)(XIee~1.00)
- 0.001475(X2) (X3we~1,00) + 2345,00(X3ws~1,00)(XPes~1.00)

SUBJECTED TO:

0.007353(X1)(X4) + 0,004760(X2) + 0.021500(X1) ¢= 1}

0. 108600 (X1#w—1.00) (¥2)(X4ew—-1,00)
+ 0.400000(X4ne~1,00) <= ]

0.619600(X1en=1,00)(X2) + 0.748000(X4) <= {

(X5) (XGew~1,00) + 1.3330(XEws-1.00) <= 1

142.86(X1## 0.53)(X3##-0,34) (X4u8—-0,5]1) (X7»#-1,70) (= [
0.002480(X1wn 0.BD) (X3we 1,40)(X4ne-1,10) (XS5ee-1,00)(X7) (= 1
40.0000(X7#e~1,00) <= |

0,135000(X6) <= 1

3,0000(X3#e-1.00) <= 1

(X1#e~1,00)(X3) (X4w» 3.00)(X6) <= 1

89




90
PROBLEM NO 7 [4], Section 11.3 |
MINIMIZE @ i
GO(X) = 1.1047(X1es 2,00)(X2) + 0.673500(X3)(X4) + 0.048110(X2) (X3I)(X4) ,
SUBJECTED TO: 1
| G1(X) = 12.0000(X2%»~2.00)(XE) ~ 3.0000(X2#u~2,00)(X3w 2.00)
| - 6.0000(X1) (X2e%—=2,00)(X3) - 3.0000(X1%# 2.00) (X2#w~-2,00) <= 1 }?
G2(X) = 0.0942B0(X3w#-1.00)(X4w#-3,00) + 0.027760(X3) <= 1
G3(X) =  1,8E+007(X1#%-2,00) (X2#n=2,00) (XSen-1,00)
+ 2.SE+008(X1#w-2,00) (X2ew-1,00) (XSw#~1.00) (XG##-1,00)
+ S.0E+006(X1ww-2,00) (XSew—1,00) (XEws-1,00)
+ 3.5E+009(X1%w-2,00) (X2#w=2.00) (XSww-1.00) (XGw#-2.00)(X7)
+ 2.SE+00B(X1%#-2.00) (X2#e-]1,00) (X5Swe-1,00) (XE##=-2,00) (X7)
+ 4.SE+006(X1nu-2,00) (X5e8—1,00) (XEwa-2.00)(X?) <= 1
G4CX) = 0,250000(X2%e 2.00) (X7##-1,00) + 0,250000(X3#» 2,00) (X7##~1,00)
+ 0.500000(X1)(X3) (X7##=-1,00) + 0.250000(X1#% 2,00)(X7#»~-1.00) <= 1
G5(X) = 16.8000(X3#w-2,00) (X4wm-1,00) <= 1 )
¥
GE(X) = (X1)(X4uwu-1,00) <= 1
4
G7(X) = 0.125000(X1##-1.00) <= 1 h
1
GB(X) = 9.0800(X3##-3.00)(X4) <= 1 i
CS(X) = 7.4E-00S(XSwe 0.50) <= 1




PROBLEM MO 8 [5], No.3
NINIMIZE &
GO(X) = 1.7150(X1) + 0.035000(X1)(XE) + 4.0565(X3) + 10.0000(X2)

+ 3000.00 - 0.063000(X3)(XS5)

SUBJECTED TO:

Gl(X) =

Ga(x) =

G3(X) =

G4(X) =

G5(X) =

GB(X) =

G7(X) =

GB(X) =

GI(X) =

G10(X) =

Gli(X) =

G12(X)

Gi3(X) =

Cl14(X) =

0.005955(X6e» 2.00) + 0.883329(X1s#-1,00)(X3)
- 0.117563(X6) <= 1

1.1088(X1)(X3#8=1,00) + 0.130353(X1)(X3ww~1.00)(XB)
= 0.006603(X1)(X3un—1.00)(KEna 2.00) <= 1

0.000662(X6=« 2,00) + 0.017240(XS) - 0,005660(X4)
= 0.019121(XB) <= 1

56,8507 (XS#u-1,00) + 1.0870(XSw#-1.00)(X6)
+ 0.321750(X4) (XSu#=1.00) - 0.037620(XS##-1.00)(XEws 2.00) <= 1

0.006198(X7) + 2462.31(X2) (X3##~-1,00) (X4##—1.00Q)
=~ 25.1256(X2) (X3#4-1.00) <= }

161.19(X7w#x%-1,00) + 5000.00(X2) (XInw=1,00) (X7#8=1,00)
= 489550. (X2) (X3##-1,00) (X4##-1,00) (X7#s-1.00) <= |

44.3333(X5#8~-1,00) + 0.330000(XS*#-1,00)(X?) <= 1
0.0QESSSFXS) =~ 0.007595(X7) <= 1

0.000610(X3) - 0,000500(X1) <= 1
0.819672(X1)(X3#»-1.00) + 0.819672(X3en~1.00) <= 1

24500. (X2) (X3##-1,00) (X4uu-1.00)
=~ 255.00(X2)(X3#a—1,00) <= |

0.010204(X4) + 1.2E-005(X2##~1.00)(X3)(X4) (= |
6.2E~005(X1)(X6) + B.2E-005(X1) - ?7.6E-005(X3) <= {

1.2200(X18%~-1,00)(X3) + (X1##~-1,00) - (XB) <= }
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CI1S(X) = 0.000S00(X1) <= |

ClB(X) = (X1®e-1,00) <= |

GI700 = 0.0083330x@) ¢= 1 1
GIB(X) = (X2es-1.00) <= 1 | X
G1S(X) = 0.000200(X3) <= 1
G(X) = (X3we-1.00) <= :

G21(X) = 0.010753(X4) <= |

——
PP

G22(X) = 85.0000(X4ww-1.00) <= }

kX) = 0.010525()','5) (= | e
G24(X) = 90.0000(XSwe~1.00) <= 1 {
Ga5(X) = 0.083333(XE) <= |

Ga6(X) = 3.0000(XE6w#~1.00) (= 1

Ga7z(xX) = 0.006173(X7) <= |

Ga28(X) = 145.00(X7#»-1,00) <= |}




PROBLEM MO 8 (5], No.4

MINIMIZE :

GU(X> = 0.400000(X1a% 0.67)(X7%#~0.67) + 0,400000(%X2%» 0.57)(XBw*-0.67)

+ 10,0000 ~ (X1) - ¢X2)

SUBJECTED TO:

Gi(X) =

Ga(X) =

G3(X) =

Ge(X) =

GS(X) =

GB(X) =

G7 (%) =

GB(X) =

CI(X) =

0.058800(XS)(X?7) + 0.100000(X1) <= 1

0.058800(X6)(X8) + G,100000(X1) + 0,100000(X2) <= 1

4.0000(X3) (XS#e~1,00) + 2.0000(XK3nu~0,71)(X588-1,00)
+ 0.058800(X3%#~1.30)(X?) <= 1

4.0000(X4) (XG#»~1.00) + 2.0000(X4ne~0,71)(%Esa~1,00)
+ 0,058800(X4##-1.30)(X8) <= 1

0.100000¢(X1) <= 1

0.100000(Xiwn-1,00) <= 1

0.100000(X2) <= 1

0.100000(X2e%~1,00) <= |

0.100000(X3) <= |

G10(X> = 0.100000(X3ww~1,00) <=}

G11¢X)

Gl2(X) =

GI3X) =

Gle(X) =

C15(x%) =

Gi6(X)

G17(X)

0.100000(X4) <= §

0.100000(X4ea~1,00) (= |

0.100000(XS) <= 1

0.100000(XSna~1,00) <= |

0.100000(X8) <= }

0.100000(XEne=1.00) <= |

0.100000(X7) <= {
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G18(X) = 0.100000(X7#a-1,00) <= |
G19(X) = 0.100000¢(X8) <= 1

GR20(X) = 0.100000(X8wa~1,00) <= 1
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PROBLEM NO 10 (5], No.5

MINIMIZE 3

GO(X) =

SUBJECTED TO:

Gi(X) =

Ge(X) =

G3(X) =

G4a(X) =

GS(X) =

C6(X) =

G7(X) =

G8(X) =

GI(X) =

Gl0(X) =

GLL(X) =

G12(X) =

G13(X) =

Gla(X) =

GIS(X) =

Cle(X) =

GI7(X) =

GI8(X) =

95

(X1) + (X2) + (X3)

833,33(X1##-1.00) (X4) (XGw*—1.00)
+ 100.0000(XE#=—1.00) - 83333, (X1#w—1.00)(XEw#-1.00) <= 1

1250.00(X2#%-1,00) (X5) (X7u%-1.00)
+ (X4)(XTw#-1.00) - 1250.00(X2#%—~1.00)(X4) (X7##-1,00) <= {

1.2E+006(X3##~1,00) (XBaw~1.00) + (XS)(XBew-1,00) - 2500.00(X3wn—1,00) (XS) (XBwa—1.00) <= 1}

0.002500(X4) + 0.002500(X8) <= 1

0.002500(X5) + 0.002500(X7?) - 0.002500(X4) <= {

0.010000(X8) - 0.010000(XS) <= 1

0.000100(X1) <= 1

100.0000(X1%»-1,00) <= 1}

0.000100(X2) <= 1}

1000.00(x2»e-1,00) <= 1t

!
0.000100(X3) <= | L
1
1000.00(X3##-1,00) <= 1 ;
0.001000(X4) <= { |
10.0000(X4%#-1.00) <= | .
0.001000(XS) (=

10.0000(X5#®~1.00) <= 1

0.00L000(X6) <w 1

10.0000(XE#"-1,00) <= |



G19(X)

G20(X)

G21(X)

G22(X)

0.001000(X7) <= |
10.0000(X7#u~1,00) <=1
0.001000(X8) <= |

10.0000(X8»=~1,00) <= 1
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PROBLEM NG £t private files

MINIMIZE

CO(X) = = (XINXF) — (XK4)(XB) + (X5) + (XB)

SUBJECTED TO:

Gl(X) = S50.0000(X1%#=1,003 ~ (X1we-1,003(X2) <=1

Ga(X) = 1.4609(XSwa~1.00) + 0.151860(X1)(XS##~1,00)
+ 0.001450(X1%» 2.00) (X5»e-1,00) &= 1

G3(X) = 0.B0CBOC(RE#~1,00) + P,203100(X2) (XG%#~1.00)
+ 0,000816(X2#% 2.00) (XE#8-1,00) <= |

G4(X) = 0.100000(X3)(X7) + 0.100000¢(X4)(X8) <=1

GS(X) = 1.5742(X7##-=1,.00) + 0.163100(X1)(X7#%-1.00)
+ 0.001358(Xi%% 2.00) (X7##-1.00) <=1

GB(X) = 0.726600(XBew~1,00) + 0.225600(X2) (X8*»~1,00)
+ 0.000778(Xexs 2,00) (X8#s—1,00) <= 1

G7(X) = 18.0000(X1##-1,00) <=1

GB8(X) = 0.033333(X1) <=1

GI(X) = 14.0000(X2##-1.00) <= 1

G10(X) = 0.040000(X2) <=1

GLLI(X) = (X3) <=1}

Gl2(X) = (X4) <= ]
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PROBLEM MO 12 private files
MINIMIZE :

GO(X) = 0.005650(X1)(X4wn-1,00) + 0.002189(X2## 2,00)(X4ne—1.00)
+ 0.032840(X3) (X4#»—1.00) + 2345.00(X4ne-1,00) (XS##—1,00)

SUBJECTED TO:

Gl(X) = 0,747940(X1##-1,.00)(XE)(X7) - 0.380400(X1#+-1.00)(X2)
- 0.299180(X1#4—1.00)(X3) <=1

GZ(X) = 0,031330¢(X1) + 0.030000(X2) + 0.024400(X3) <=1

G3(X) = (XB)(XT#w—1.00) + 1.3330(XJe»-1.00) <=}

G4(X) = (X1)(X7»u=-1,00) + (X2)(X7#%-1,00) + (X3)(X7##~1,00) (=1
GS(X) = 0.007000(X4n» 0,34)(XSen 1,70)(XE#w 0,51)(X7##-0,53) (=1
GE(X) = 0,002480(X4#% 1.40)(X5) (XE*n-1,10)(X7#» 0,80)(X8w=»-1,00) <= 1
G7(X) = 40.0000(XSa»-1,00) <=1

GB(X) = 0.125000(X9) <=1

Ga(X) 3.0000(X4n=-1,00) <=1

GIO(X) = (X4)(XEu» 3,00) (X7#=-1.00)(X3> <= |

G11(X) = 0.050000(X3##~1.00)(X7) <= |
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GO(X) =

Gl1(X) =

G2(X) =

G3(X) =

G4(X) =

GS(X) =

GB(X) =

G7(X) =

GB8(X) =

GI(X)

G10(X) =

Gl1(X) =

PROBLEM NO 13 [4], Section 10.1

MINIMIZE

5.8850(X1)(X4) (X5##-1,00) + 5.8850(X3)(X4) (X5##-1,00)

SUBJECTED TQ:

(X3wn-2,00)(XEwe 2.00) + (X2»# 2.00)(X3##-2.00) <=1

8.9400(X1)(X2w#—1.00) (X4uu—1,00) (X7en-1,00)
+ 8,9400(X2%#-1.00) (X4nu—-1_00) (X7#e-1,00)(X8) <= |

8.9400(X1) (X9##-2_,00) + 8.9400(X8) (XGne-2,00) <= |
0.015600(X1)(X4#%~1,00) + 0.150000(X4n#-1,00) <= |
0.015600(X3) (X4uu—1,00) + 0.150000(Xqn#-1,00) <= 1
(X1#n-1,00)(X5) — (X1lwx=1,00)(XE) <= 1
2.5000(X1#%-1,00)(X7) - 0.416667 (X1##~1,00)(X3) <=1
(X2we-2,00) (X3n= 2;00) = (X2un-2,00) (X8u» 2,00) <=1
4.4000(X2n#—-2,.00) (X4%%—1,.00) (X7a#-1,00) (XG*» 2,67) <= |
1.0500(Xq»n~-1,00) <=1

(X2) (X3#%-1,00) <= ]

-y -
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PROBLEM Mo 14 [22], No.12

MINIMIZE

GO(X) =

2.8485(X1) - 22.4990(X1)(X2) + 2.8952(X1)(X3)
+ 0.305700¢(X1)(X4) — 4,4318(X1)(XS) + 0.140000(X1)(XS=e 2,00)
+ 3.5974(X1)(XE) + 0.050000(X1)(X7)

SUBJECTED TO:

G1(X) =

G2(X)

G3(X)

G4(X)

G5(X)

G6(X)

G7 (X3

G8(X)

100.0000(X3) (X9##~1.00) - 100.0000(X3)(XBu» 0.01)(XSwe~1,01)
+ (XB)(X9#u-1,00) <= 1|

0.474400(X1) (X4nuu—-1,00) (X8»#-1.00)

+ 0.875640(X1##~1,.00)(X4)(XE) (XBas~1,00]

+ 0.012152(X1)(X8##-1,00) + 0.139100(X1)(XE)(X8Bum-1,00)
+ 0.397900(X1)(XEw» 2,00)(X8#e—1,00)

- 5.7222(X6) <=1

10.4351(xx~--1.003(x4)(xs--1.00>(xs-~—1.od)

= 72.5476(XS##~1,00) + 5.6303(X3) (X5#»-1,00)

4+ 0.127900C(X4) (KS##—1,00) - 1.8453(XB) - 133.81(XS##-1,00)(XE)
4+ 10.3930(X3) (XS#x-1.00)(X6) + 0.236200(X4) (XSe#~1,00) (X6)

4+ 19.2611(X1w#=1,00)(X4) (XSn#=1,00)(XBE) (XG##—-1,00) <= 1

0.003309(X1) -~ 0.006910(X1)(X3) - 0.000486(X1)(X4)

+ 0.010090(X1)(X3) ~ L1.3E~006(Xl## 3,00) — 1.SE-00S(X1es 3.00)(X6)
= 4,2E~005(X1#» 3,00)(X6w# 2,00)(X8#%-1,00)

= 0.000253(X1)(X5## 2,00) <=1

21.3351(X4%»%-1.00) = 1.8458(X6) <= 1

0.002017(X1) + 0.004878(X1)(X2) + 0.005735(X1)(XS)
= 0.000744(X1)(X3) - B.3E-00S(X1)(X4) - 1.8E-00S(X1I(X7} <= 1

0.001817(X1) + 0.011287(X1)(X2) + 0.010795(X1)(XS) i
+ 1.3E-005(X1)(X?7) = 0.003304(X1)(X3) ~ 0.000471(X1)(X4)
= 0.000363(X13(X5%% 2,00) (= 1}

0.025616(X1## 2,00) (X7#»~1.00) + 0.293164(X1ne 2,00)(XE)(X7we-1,00)

e il e



+ 0.838770(X1#® 2,00) (XEw#* 2,00)(X7%#~1,00) (= |

GI(X) = = 4.4400(XS#»~1.00) + 41.0400(X2)(XSe#~1,00)
+ 5.6300(X3)(XS##-1.00) + 0.122800(X4)(XSen-1,00) <= 1

G10(X) = 0.400000(XG##-£.00) <= 1}
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PROBLEM MO 15 [22], No.l15

MINIMIZE :

GO(X) = 0.050000(X1) + 0.050000(X2) + 0.050000(X3) + (X9)

E SUBJECTED TO:

% Gl1(X) = (X7eu—=1.00)(X10) - 0.500000(X1)(X4)(X7#a=1,00) <=1
GR(X) = (X7)(XBw»—1,00) - 0.500000(X2) (XS5)(X8##-1.00) <= 1
G3(X) = (XB8)(XSwn-1,00) - 0.S00000(X3)(KEI(XGna—-1.00) (= 1
G4(X) = 0.500000(X3)(X10%%—1,00) + 0.250000(X10##—1,00) <= 1
GS(X) = 0.796810(X4)(X7#n-1,00) <= |
GB(X) = 0,796810(XS)(X8##-1.00) <= 1
G7(X) = 0.796810(XB)(X3ws-1.00) <= 1
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PROBLEM NO 16 [22], No. 14

MINIMIZE ¢
GO(X) = (XB) + 0.400000(X4%e 0.67) + 0.400000(XS=# 0.67>
SUB.ECTED TO:
G1(X) = 10.0000(X3»#~1.00) - (X1)(X3ws—1,00) (= 1

Ga(X) = (X1)(XBwe—=1,00) -~ (XB)(XBww-1,00) <= 1

GA(X) = (X1ww—1.00)(X2##-1,.50)(X3) (X4#u—1,00) (XSwe-1,00)
+ 5.0000(X10e~1,00) (X2un~1,00)(X3)(XSw» 1,20) <=}
G4(X) = 0.050000(X3) + 0.050000(X2) <= 1
GS(X) = (XG#n—1.00)(X7#5—1.50) (X8) (XGuu~1,00) (X10%%-1.00)
+ 5.0000(XEau~1,00)(X7%4~1,00) (XBI(X10#® 1.20) <=}
GE(X) = (X2u0-1,00)(X?) + (X2#8-1,00) (X8> <= |
G7(X) = 10.0000(X10) <= )
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proBLEM MO 17 [22], No. 16
MINIMIZE $

GO(X) = 0.050000(X1) + 0.050000(X2) + 0.050000(X3) + (X3) j
SUBJECTED TO: }

G1(X) 0.500000(X9) (X10#»-1.00) + 0.250000(X10%#—1.00) <= 1

G2(X) = (X7#e—1,00)(X10) - 0.500000(X1) (X4) (X7#%-1,00) <=1 h
‘ G3(X) = (X7)(XBwa-1.00) - 0.500000(X2) (XS) (XBe#-1,00) <= 1

Ca(X) = (X8)(X9wn-1.00) - 0.500000(X3) (X6) (X8#n-1.00) <=1 b

GS(X) = 0.700329(X4)(X7e%-1.00) + 0.307735(X7) <= 1

GE(X) = 0.700329(X5) (XBen—1.00) + 0.307795(X8) <= 1

G7(X) = 0,700329(XE) (XG#=-1.00) +-0,307795(X9) <= 1
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PRUBLEM NO 18 [22], NO. 21 |
MINIMIZE ¢
CO(X) = - 0.063000(X4)(X7) + 5.0400(X1) + 0.035000(X2) + 10.0000(X3)
: + 3.3500(XS)
: SUBJECTED TO: 3
% C1(X) = 0.892B50(X1##~1.00)(X4) - 0.117SG0(X8) + 0.005355(XBee 2.00) <= 1 | H
| Ga(X) = 0.017410(X7) - 0.019130(X8) + 0.000662(XBws 2.00) E'
- 0.00S6B0(XE) <= 1 E
C3(X) = 35.8200(XSws—1,00) - 0.222100(X9m=—1.00)(X10) <= 1
G4(X) = 1,2200(X4) (XSes—1,00) - (X1)(XSwn-1.00) <= 1
‘ CS(X) = (X1)(X2##~1.00)(X8) - 1.2300(X2e%~1.00)(X4)
f + (X1)(K209-1.00) <= §
#i GE(X) = 0.330000(X7w#—1,00)(X10) + 44.3330(X7#*-1.00) <=
f G7(X) = 1.0E-005(X3ew~1,00)(X4)(XE)(X3) + 0.010202(XE) <= 1
| GE(X) = 0.000500(X1) <= 1
; GI(X) =  §.2E-005(X2) <= 1
4
G10(X) = 0.008333(X3) <= 1 L

GLL(X) = 0,000200(X4) <= 1
G12(X) = 0.000500(X5) <= 1 i

G13(X) = 0.010753(X6) <= 1

Gi4(X) = 85.0000({XEw#~1,00) <= 1

G15(X) = 0.010526(X7) <= 1

CI18(X) = 90.0000(X7#%~1,00) <= ¢

Gl7(X) = 0,083333(X8) <=1




e s+ S “1'
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G180x)

3.0000(XB8#w-1.00) <= 1 ]
1
0.250000(X9) <= 1

o G19(X)

G20(X)

1.2000(X9»e~-1.00) <= 1

v G21(X)

0.006173(X10) <= 1

G22(Xx)

145.00(X10se-1.00) (= |
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PROBLEM MO 18 [22], No. 24

MINIMIZE 3

CO(X) = 1,2626(X8) + 1.2626(X9) + 1.2626(X10) - 1.2311(X1)(XB)
= 1.2311(X2) (X9} - 1.2311(X3)(X10)

SUBJECTED TO:

Gl(X) = 0,034745(X1)(X4we-1,00) + 0.975000(X1) - 0.009800(Xiwe 2.00)(X4ua-]1,00) <= |

G2(xX)

G3(X)

GA(X)

(~-1¢ 3]

G6(X)

G7(X)

G8(X)

GI(X)

G10(X)

G11(X)

G12(X)

G13(X)

G14(X)

C15(X)

G16(X)

G17(X)

0.034745(X2) (XS#»-1,.00) + 0.975000(X2) - 0.009800(X2%e 2.00)(XSes-1,00) (= 1
0.034745(X3) (X6a#-1,00) + 0.975000(X3) - 0.009B00(X3w+ 2,00)(X6##-1.00) <= 1
(X1) (XSwu—1,00) (X7%%-1,00)(XB) + (X4)(XSw##~1.00) - 1.1000(X4)(XS#w—1.00)(X7»n-1,00)(X8) <= 1

0.002000(X2) (X3} + 0.002000(X5)(XB) + (X5) + (X6) — 0.002000(X1)(X8)
= 0.002100(XB)(X3) <= 1}

(X298-~1,00)(X3) (XIn#-1,00)(X10) + (X2#»-1,00)(XE) + 500.00(XJ=w-1,00)
= 1.1000(X99#-1,00)(X10) ~ S510.00(X2##-1,00) (XE) (X3#=»-1,00) <= 1

0.900000(X2»#~1.00) + 0.002000(X10) - 0.002100(X2e»~1,00)(X3)(XI0) <=1
0.002000(X7) ~ 0.002100(X8) <=1

(X2) (X3nw-1,00) <= 1

(X1)(X2wa~1,00) <=1

(X1) <=1

0.3100000(X1wa—1,00) <=1

(X2) <= 1

0.100000(¥2%%~1.00) <= |

(X3) <= 1

0.900000(X3%#~1.00) <= 1

10.0000(X4) <= |




G18(X)
G19(X)
G20(X)
G21(x)
Gaa(x)

G23(X)

0.100000(XSee~1.00) <= }

1.1511(X6) <= |

0.100000(XEwe—1.00) <= 1

500.00(X9uw-1,00) <= |

0.002000(X10) <=1

0.100000(X10a%-1,.00) <=1
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PROBLEM NO 20 [22], No. 17

MINIMIZE :

CO(X) =

(X3#e-1.,00)

SUBJECTED TO:

Gl1(X) =
G2(X) =
G3(X) =
G4(X; =
G5(X) =
G6(X) =
G7(X) =
GB(X) =

GI(X) =

0.999000(X4n#-1.00) ~ 100.10(X7)(X10) <= 1

(X10)(X11#»—1.00) ~ 10.0200(X8) <= 1

(XSes—-1,00) - 10.2000(X1##-1,00)(X8)(X1]l) <=1

10.0000(X11) - 10.0200(X9) <= |

(Xpw#—1,00) - 1.2000(X2nx=1,00)(X3) <=1

0.098000(X10) + 0.980000(X7)(X10) <= 1

9.8000(X1)(X4) + 2.9000(X1)(X4)(X7#» 2,00) <=1

0.980000(X1##~1,00)(X2)(X5) + 0.990000(X1#»~1,00)(X2)(XS)(X8e= 2,00) <= |

0.970000(X2n#~1,00)(X3)(XB) + 0.980000(X2n#-1,00)(X3)(XB)(X3ww 2,00) <= |

109

1)
!
!




110

PROBLEM NO 21 [22], No. 18

i MINIMIZE @

GO(X) = (XSwe—1,00)

SUBJECTED TO:

GL(X) = ~ (X2)(X4#e—1,00)(X11) + (X4w##—1.00)(X5) + 0.010000(X4#»—1.00)(XT)(X11)(X13##-1,00)
+ 0.010000(X4#n—-1,00)(X5)(X11) <=1

G2(X) = - 0.010000(XS) (X7#a—1,00)(X11) + (X7#n~1.00)(X8) <=1

G3I(X) = - 2100.00(X3)(XS#»—1.00) + 26.2000(X5#%~-1,00)(X6) <=1

Ga(X) = <= 21.1300(XB)(XB=#-1.00) + (X8##-1.00)(X9) <=1

GS(X) = (X1) + (X1)(X10) + (X1)(X10)(X12) <=1 *.

GE(X) = (X1#w—-1,00)(X4)(X10%»~1,00) + 0.003000(X1##-1,00)(X4)(X12#»-1,00)
+ 0.009000(X1#%~1.00)(X4) <= 1

G7(X) = 0,990000(X1wn~1,00)(X2) + (X1##-1.00)(X2)(X11) + (X1##-1.00)(X2)(X11)(X13) <=1

G8(X) = S4.0000(X4#%-1,00)(X7)(X10%=-1,00) <= 1

GI(X) = 9301.00(X2»~1,00)(X3) <= 1|

|
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PROBLEM NO 22 [22]), No. 20 .
MINIMIZE :

GO(X) = - 0,280000(X1)(XE*##~1.00) + 0,673200(X2) (XG*»~1.00)
+ 1,1200(X3) (XE##—1,00) - 31047.(XG#%~1,00)
+ 0.007400(X5)(XE6nn—1,00)

SUBJECTED TO:

Gi(X) = 0.639326(X4awe-0,25) (X8) (X10#%-1,00)
= 0.1S6564(X4as 0,.42) (X9ue~1,00)(X11)
- 0.100000(X10)(X13%#~1,00) <= |

G2(X} = (X1)(X4n%-1,00)(X7wn~1,00) (XB#5—1,00) (XI##~1,00)
= 0.312540(X4Ans 0,25) (X103 (X13#2#—1,00) <= |

G3(X) = (X11#%-1,003(X13) + 1.2501(X4#» 1,25)(X7)I{X3)(XL0)(X11nw-1,00)
= 0.244B60(X4n% ] B?I(X7)(X10) <= |

G4(X) = (X5##-1,00)(X12) + 0.733980(X4ne | ,67)(KX5e¢x-1,00)(X7)(X10)(X11)
+ (XSe#—-1,00)(X11) ~ (XS##~1.00)(X13) <= 1

G5(X} = 3809.97(X4%%-1,25) (X7##-1,00) (XG##~1.00) (X10%#—1.00)
+ 0.195706(X4n# 0,42) (X9##~1,00)(X11) <= 1

GB(X) = (X10)(X12%»~1.00) + 0.244B60(X4n» 0.57) (XSwa—1,00)(X10)(X11)(X12*%~1.00)
+ 0.156270(Xq%» 0,25) (X10w= 2,00) (X12#8-5,007(X13%%~1,00)
+ (X3)(X12%#~1,00) + 11.0000(X12#%~1,00)(X13) + 1.5628/Xden 0,25) (X101 (X]1Rww~1,00) <= 1

G7(X) = 0,733980(X3#w~1,00)(X4um 0.67)(X7)(X10)(X11) <= 1

GB(X) = 0.312540(X2#%-1.00)(Xdu% 1,25)(X7)(XD)(X10) (X12)(X13wx-1.00) <= 1

Gax) 0,020000(XS*» 2,00) (XG##—1.00)(X7) <= |
Gl0(X) = 0.007720(%X4) <= ¢

Gl1(X) = B.1800(X4ws—1,00) 4= 1
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PROBLEM NO 23 [22], No. 19
MINIMIZE :

GO(X) = 2.0425(X1e» 0.78) + 52.2500(X2) + 192.85(X2»» 0.90)
+ 5.2500(X2e= 3.00) + 61.4650(XEw» 0.47)
+ 0.017480(X3#+ 1,33)(X4%=-0,80) + 100.70(X4%» 0,55)
+ 3.7E-010(X3%» 2,85)(X4w%-1.70) + 0.009450(X5) + 1.1E-010(X4nn—1,80)(XS#» 2.80)

+ 116.00(XB) ~ 205.00(XB)(X7) — 278.00(X2#% 3,00)(X7) L
SUBJECTED TO:
GI(X) = 129.40(X2#%-3.00) + 105.00(XEw#-1,00) <= |
G2(X) = 103000.(X2#% 3.00)(X3%#%—1,00) (X?)(XB#»—1,00)
+ 1,2E+006(X3%%—1,00)(X8Br=-1,00) <= 1
|
‘ G3(X) = 4.6800(X1#x-1,00)(X2%# 3,00) + B1.3000(X1xx-1,00)(X2n* 2.00) '_
+ 160.50(X1#%-1,00)(X2) <= 1 x
\
G4(X) = 1.7300(X7) + 3.0200(X2%» 3,00) (XEw=-1.00)(X?)
+ 35.7000(X6#»-1,00) <= 1
G5(X) = 0.001220(X3) (X4#»—0,20) (XS»#-0.80)(X8)

+ 0.001670(X3#» 0.40) (X4%=2-0,43)(X8)
+ 3.BE~005(X3)(X4##~1,00)(XB) + 0.002000(X3) (XS#»-1.00)(X8)
+ 0.064000(X8) <= 1

i
A
t
;
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PROBLEM NO 24 (5], No. 6

ree———— — T "
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MINIMIZE :
COCX) = (X11) + (X12) + (X13)
SUBJECTED TO:
GI(X) = 1.2626(XB)(X1lwm-1.00) - 1.2311(X1)(X8)(X11##-1.00) <= 1
C2(X) = 1.2626(X9)(X12%#-1.00) - 1.2311(X2)(X3)(X12##-1.00) <= 1
C3(X) = 1.2626(X10)(X13w#-1,00) - 1.2311(X3)(X10)(X13##=1,00) <= 1
C4(X) = 0.034750(X2) (XSee-1,00) + 0.975000(X2) - 0.003800(X2## 2.00)(XS##-1.00) <= 1
G5(X) = 0.034750(X3) (XG##-1,00) + 0.875000(X3) ~ 0.009750(X3#» 2,00) (XEG##-1.00) <=_1 (%
CB(X) =  (X1)(XS#a—1.00) (X7#e~1,00)(XB) + (X4)(XS##-1.00) — 1.1000(X4)(XSx#~1,00) (X7##-1,00)(X8) <= 1 }i
G7(X) = 0.002000(X2)(X9) + 0.002000(X5)(X8) + (XE) + (XS) - 0.002110(X1)(X8) 2
~ 0.002000(XE)(X3) <= 1 5
GBIX) = (X2wa-1,00)(X3)(X9wa—1.00)(X10) + (X2##=1.00)(XE) + 500.00(XS*#-1,00) t
- (Xg##=1.00)(X10) ~ S01.00(X2##~1,00)(XE)(¥9a8-1.00) <= 1
GI(X) = 0.900000(X2%#-1,00) + 0.002000(X10) ~ 0.002200(X2n#-1.00) (X3} (X10) <= 1
G10(X) = 0.002000(X?) - 0.002100(X8) <= 1
GL1(X) = 0,034750(X1)(X4sw=1,00) + 0.975000(X1) - 0.009800(X1x* 2.00) (X4#w-1.00) <= 1
Gl2(X) = 0.980000(X2) (X3w#-1,00) <= 1
:
GI13(X) =  (X1)(X2%#-1.00) <= {
G14(X) = 0.100000(X1%#~1,00) <= 1
GIS(X) = (X1) <= 1 :
{
GI6(X) = 0.100000(X2##-1,00) <= 1 l
GI7¢X) = (X2) <= 1
G18(X) = 0.900000(X3ws-1.00) <= 1
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G13(X) = (X3) <=1
G20(X) = 0.000100(X4wn-1,00) <= 1
G21(X) = 10.0000(X4) <= i
G22(X) = 0.100000(XSw#-1.00) <= 1
GR3(X) = 1.1111(X5) <= § ;
G24(X) = 0.100000(XE##-1.00) <= 1
G25(X) = 1.1111(X6) <= 1
G26(X) = 0,100000(X7##-1.00) <= 1
G27(X) = 0.001000(X7) <= 1
G2B(X) = 0.100000(X8##—1.00) <= 1

|
%
3
&
Ga2s(X) = 0.001000(X8) <=1 *
G30(X) = S00.00(XgGwu—-1,00) <= 1 {

G31(X) = 0.001000(X9) <=1}

G32(X) = 0.100000(X10##-1.00) <= 1
G33(X) = 0.002000(X10) <=1
G34(X) = (Xiisw-1,00) <=1
G3S(X) = 0.006667(X11) <=1
G36(X) = 0.000100(X12##~1.00) <= |
G37(X) = 0.006667(X12) <= 1

G38(X) = 0.000100(X13##~-1.00) <= |

G39(X) = 0.006667(X13) <= 1
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PROBLEM NG 25 [23], No. 11

MINIMIZE :

GO(X) =

(X14) + (X13) + (X12) + (X11) + (X10)

SUBJECTED TD:

Gl(x) =

Ga(x) =

G3(X) =

G4(X) =

GS(X) =

GB(X) =

G7(X) =

G8(X) =

G3(X)

Gl0(X) =

0.002000(X9) + 0.002000(X8) <= 1

0.001000(X7) + 0.001000(XE8) — 0.001000(X9) <= 1

0.002000(X5) + 0.002000(X4) - 0.002000(X?7) <= 1 ;
0.001400(X3) + 0,001400(X2) ~ 0.001400(X5) <=1

0.003000(X1) - 0.003000(X3) <= 1

0.010000¢(X3) + 0.001750(X14) - 1.2E-005(XB)(X14) (=1

(X7)(XSww—1,00) + 0.001150(X13) — 0.000800(X6)(XI#%—1.00)(X13) <= |

v e ol

(X5) (X7wn—1.00) + 0,000364(X12) — 0.000400(X4) (X7##-1.00)(X12) <= 1

)

(X3)(XSw#-1,00) + 0,000332(X11) — 0.000200(X2) (XSw#-1.00)(X1}) <=1

700.00(X3#%-1,00) + 0.000103(X10) - 0.000100(X1)(X3##-1,00)(X10) <= 1
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PROBLEM N0 26 [5] No. 7

MINIMIZE @

GO(X) =

1.2626(X12) + 1.2626(X13) + 1.2626(X14) + 1.2626(X15)
+ 1.,2626(X16) -~ 1.2311(X13(X12) ~ 1.2311(X2) (X1
= 1.2311(X3)(X14) ~ 1.2311(X4)(X15) - 1.2311(X5)(X16)

SUBJECTED TO:
G1(X) = 0,034750(X1)(XE#»-1.00) + 0.975000(X1} - 0.00S800(X1#» 2,00)(XGen~1,00) <= 1
G2(X) = 0.034750(X2) (X?w»-1,.00) + 0.875000(X2) ~ 0.009800(X2w» 2.00)(X7##-1.00) <= |
G3(X) » 0.034750(X3) (X8wn—1,00) + 0.875000(X3) - 0.009800(X3w* 2.00) (XBwe-1.00) <= 1
G4(X) = 0.034750(X4)(X3ua~1.00) + 0.975000(X4) - 0.009800(X4x= 2,00) (XGew-1,00) <= 1
CS(X) = 0.034750(X5)(X10%##-1,00) + 0.975000(X5) - 0.009800(XS## 2,.00)(X10#%—1.00) <= 1
GB(X) = (XB)(X7w#a—1.00) + (X1)(X7w8=-1.00)(X11#9—1,00)(X12) ~ (XB)(X7##—1.00)(X11#n-1,002(X12) <= 1
G7(X) = (X7)(X8#u-1,00) + 0,002000(X7)(XBue-1,00)(X12)
+ 0.002000(X23(X8#s—1.00)(X13) - 0.002000(X13) ~ 0.002000(X})(XBwe—1,00)(X12) <= 1
GB(X) = (X8) + 0.002000(X8)(X13) + 0.002000(X3)(X14) + (XI) - 0.002100(X2)(X13)
- 0.002100¢(X9)(X14) <= |
GA(X) =  (X3Iww—1,00)(X9) + (X3I»w-1,00)(X4)(X14##-1,00)(X15) + 500,00(X3%*~1.00)(X10)(X14%a-1.00)
~ S01.00(X3%%=1,00)(X9) (X15%%-1,00)
= (X32e-i,00)(X8)(X14##~1,00)(X15) <= 1
G10(X) = 0.990000(X4##-1.00)(XS) (X1S##~1.00)(X16)
+ 0.990000(X4uu—1,00)(X10) + 399.00(X15%%-1,00)
- 1,1000(X1Suw—1,00)(316) - 501.00(X4eu~1,00)(X10)(X15%»-1.00) <= 1
Gl1(X) = 0.880000(X4ee~1,00) + 0.002000(X16) - 0.002200(X4#»~].00) (X5 (XIF) <= |
G12(X) = 0.002000(X11) - 0.002000(X12) <=
C13(X) = (X11ew=1,00)(X12) <= |
C14(X) = (X4)(XSea-1,00) <= |

[ U —



£15¢(%)
G16(X)
G17(X)
G18(X)
G19(x)
G20(X)
GR1(X)
G22(X)
6G23(X)
G24(X)

Gas(x)

G2B(X)

Ger (x>

(X3) (X4ua—]1.00) <= |

(X2) (X3s9-1,00) <= 1-

(X1)(X2uw-1,00) (= 1}

(X9) (X10we-1.00) <= 1}

(X8) (XGwa—1.00) <= |

1.1111(X3) <= 1

1.1111(X4) <= |

0.900000(XS#=-1.00) <= 1

10.0000(XE> <= L

0.100000(X7w%~1.00) <= |

500.00(X14#»~1.00) <=1}

500.00(X15»e-1.00) <= 1}

1.0E-006(X16%#~1,00) (= |
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Signomial Form;

PRUBLEM NO 1-1

- SOLUTION

NO 89 = (

NO 10 = ¢

8.1301,

POINTS :

8.1057,

6.2548,

6.2207,

6.501S,

5.6104,

8.1632,

5.4532,

5.7133,

6.6075,

6.5931,

0.615368,

0.628351,

0.719659,

0.649534,

0.573547,

0.550418,

0.663106»

0.659151,

0.6456E3,

0.531670,

0.734362s

0.564042,

0.364381,

0.427716,

0.415851,

0.400944,

0.476718,

0.366412,

0.494682,

0.457506,

0.402689,

0.413470,

Primal Solutions and Starting Point Files

5.6262)

5.6574)

S.6274)

5.6541)

5.64€E8)

5.6167)

5.6526)

5.6462)

S.6611)

5.8361)

5.68514)

T
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PROBLEM MO 1-2

SOLUTION @
( 8.1301,
STARTING POINTS
M 2 = ( 7.7815,
NO 2= ( 7.7282,
N0 3 = ( 7.3389,
NO 4 = ( 7.2063,
MO S = ( 7.7566,
NO 6 = ( 7.4947,
NO 7 = ( 7.7469,
NO 8 = ( 7.0609,
NO 89 = ( 7.1573,
NO 10 = ( 7.7294,

0.615368,

0.634553,

0.590841,

0.640407,

0.668051,

0.560861,

0.696034,

0.670657s.

0.526088,

0.5S60E56»

0.685576,

0.5684042,

0.522380,

0.477555

0.640926,

0.61674S,

0.466279,

0.524641,

5.6362)

€.6402)

£5.2649)

6.2081)

6.2281)

5.6270)

6.2492)

0.492031. .6.3400)

0.558544,

0.522456,

0.540562,

5.86810)

6.2624)

6.4877)
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PROBLEM NO 2-1
SOLUTION 3
( S2.6009, 1.1869, 24.7980, 0.408587)
" STARTING POINTS :
N0 1 = ¢ 68.2085, 1.6134, 29.0510, 0.384794)

41.6520, 1.S5211, 18.7360,» 0.302417)

3
)]
[ ]

3 = ( 38.9813, 1.477S, 29.3653,» 0.280381) |

4 = ( 38.4519, 1.5797, 25.2471,» 0.302295)

S = ( 42.3744, 1.5675, 32.8390, 0.392482)

46.9631, 1.2794,» 20.2188, 0.590697)

7 = ( 62.9266, 1.5403, 22.0829, 0.544536)

8 = ( 76.80686, 1.2291, 28.2350s 0.463155)

9 = ( 39.8044, 1.3076, 33.248S, 0.512354)

37.6591, 1.4409, 30.5907, 0.51538%)

3 3 3 3 & & & 3
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PROBLEM NO 2-2
SOLUTION
¢ 52.6008, 1.1869, 24.7980, 0.408587)
STARTING POINTS ¢
NO 1 = ( S8.8431, 1.3575, 26.4992, 0.399130)
|

NO 2 = ( 48.2213, 1.3206, 22.3732, 0.366173)

NO 3 = ( 47.5531, 1.3031, 26.6251, 0.357365)
-NO 4 = ( 46.9413, 1.3440, 24.9776, 0.3686130)
NO S = ( 48.5103, 1.3391, 28.0544, 0.402205)
NO 6 = ( 50.3458, 1.2239,» 22.9663, 0.481431)
NO 7 = ( S6.7312, 1.3285, 23.71139, 0.463027)
NO B8 = ( 62.2832» 1.2038, 26.1728y 0.430474)

47.4823, 1.2352, 28.1782, 0.450154)

u
-~

NO 9

46.6242, 1.2885, 27.1150, 0.451608)

"
~

NO 10




PROBLEM ND 3-1

SOLUTION

(
éTRRTIHG
NO L = (
NO 2= (

MO 3= (

3 8 8 8 8 8 3
~

0.000100,

POINTS

0.000125S,

0.000111,

0.000113,

0.000122,

0.000124,

0.000137,

0.000125,

0.000118,

0.000127,

0.000127,

0.999873, 1.9999,

0.926877, 1.2426,

1.0976, 1.0764, 0.

0.973347, 1.8504.

0.724077,» 1.5599,

0.948827, 1.4740,

1.1670,» 1.4386, Q.

1.3477, 1.6913, J.

1.2882, 1.2834, 0.

1.3852, 1.6942s 1.

1.3504, 1.8215, O.

1.0001)

1.1960)

877413}

0.550537)

0.722830?

0.656020)

904726)

794910)

968813)

0519

773129
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PROBLEM NO 3-2

SOLUTION

STARTING

3 8 3 8 3 & 3 &

NO 9= ¢

NO 10 = ¢

0.000100,

POINTS

0.000110,

0.000104,

0.00010S,

0.000109,

0.000110,

0.000115,

0.000110,

0.000108,

0.000111%,

0.000111,

0.999973,» 1.9999, 1.0001)

0.970735,» 1.68970., 1.0785)

1.0390,» 1.6305, 0.951014)

0.989323, 1.8601, 0.820264)

0.889615,» 1.8233, 0.883205)

0.97951S, 1.7?8SB, 0.862457)

1.0668s 1.7754» 0.9613840)

1.1391, 1.8765, 0.918013)

1.1153, 1.7133, 0.987574)

1.1540, 1.8776,» 1.0208)

1.1401, 1.9686s 0.309301)
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PROBLEM NO S-1
SOLUTION :

( 78.0000, 33.0000, 29.9957» 45.0000,» 36.7753)
STARTING POINTS :
N 1 = ( 100.50, 35.4915, 38,8361, 37.8710, 28.6243)
MO 2 = ( B2.029S, 33.3329, 37.8173, 28.0470, 29.6721)
NO 3 = ( 86.8346, 37.0309, 41.5272, 32.9536, 38.7201)
NO 4 = ( S0.9677, 40.5841, 40.0037, 35,6493, 32.2644)
NO S = ( B89.7803, 40.49139, 40.4457, 38.4262, 30.100%)

NO € = ( 99.5187, 33.3320, 37.9493, 31.6024, 41.'494)

M0 7 = ( 78.0805, 33.3283, 39.6590, 29.1210, 31.3703) | ¥
NO 8 = ( 938.0024, 35.5475, 39.5616, 32,8626, 34.43998)
MO 9 = ( 78.4972, 35.3481, 43.2623, 36.4195, 32.5942)

NO 10 86.1427, 38.1545, 39.1833, 31.9787, 29.6865:;

it
~
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PROBLEM ND 5-2
SOLUTION :
( 78.0000, 33.0000, 29.9357, 45.0000, 36.7753)

STARTING POINTS :

NO 1 = C 87.0003, 33.9966, 33.5319, 42.1484, 33.5149)
NO 2 = ( 79.6118, 33.1332, 33.1244, 38.2183, 33.9340)
NO 3 = ( 81.5339, 34.6123, 34.6083s 40.1814, 37.5532)
-ND 4 = ( B2.7121» 35.9968» 34.1757,» 42.3705, 34.1055)

86.6075, 33.1568, 33.1772, 39.6410, 38.5643)

1)
~

NO S

NG B = ( 78.0242, 33.1316, 33.8610, 38.8484, 34.6133)

NO 7 = ( 86.0010, 34.0:90, 33.8221, 40.1451, 35.8651)

NO 8 = ( 79.7649., 35.8383, 34.0212, 42.9372, 32.8043)

NO 9 = ( 78.13883, 33.9333, 35.3024, 41.5678, 35.1029)

NO 10 = ( 88.5190, 34.92839, 31.4040, 40.5922, 33.845%)
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PROBLEM NO 6-1
SOLUTION 3
( 1.5360, 1.0E-008, 3.0000s 0.400000. 5.5670, 8.0000, 149.51)

STARTING POINTS

..

N0 1= (¢ 1.5882, B6.SE-009, 3.0337, 0.401476, 6.5773,» 7.9827, 108.29)
NO 2 =( 1.5718, 7.8E-009, 3.0i76s, 0.403252, 6.4130, 7.8101, 103.08) j
NO 3 = ( 1.5856,» 1.0E-008, 3.0276, 0.402255, 6.3897, 7.7998, 98,.1192)
NO 4 = ( 1.5758, 7.2E~009,» 3.0178,» 0.403329, 6.5429, 7,8943, 105.18)

NO § = (1.5731, 7.EE-009, 3.0286, 0.402185, 6.4891, 7,8173, 103.60)

NO 6 = ( 1.6752,» ?7.SE-009, 3.0617, 0.404248, 5.3500., 7.8975, 115.14) i
NO 7 = ( 1.6192, 8.8E-009s 3.1532, 0.401502, §.5086,» 7.8824. 103.69) t'
NO 8 = ( 1.8623, 7.4E-009, 3.0355, 0.402302, 6.2152,» 7.7183, 123.27)
NO 9 = ( 1.6117, 6.8€-009, 3.0452, 0.405690, 6.3023, 7.9221, 115.60)

NO 10 = ( 1.5B35, ?7.7E-009, 3.0882, 0.401267, 6.5345, 7.8943. 103.14)

- ——————— . = e

i e —— .
ek it a
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PROBLEM NO 6-2

SOLUTION @

¢ 1.5360, 1,.0E-008, 3.0000, 0.400000, 6.6670, 8.0000, 149.51)

STARTING POINTS @

MO § = ( 1.5569, 8.8£-009, 3.0135, 0.400530, 6.6311, 7.8931, 133.02) :
N0 2= ( 1,5504, 9.1E-009, 3.0071, 0.401301, E.5678, 7.9240, 130.94)
NO 3 = ( 1,.5558, 1.0E-008, 3.0110, 0.400902, 6.5561, 7.9199, 128.95)
.NO 4 = ( 1,5519, 8.89£-009, 3.0071, 0.401332s» 6.6173, 7.9577, 131.78)
NO 5 =( 1,5508, 9,0E-008, 3.0114, 0.400874, 6.5878s 7.3269. 131.14)
NO 6 =( 1.5917, 9.2E-008, 3.0247» 0.401699s, 65.5442, 7.9530, 135.76)
NO 7 = ( 1.5693, 9.5E-009, 3.0637,» 0.400601, 6.6037, 7.9530, 131.18)
NO 8 = ( 1.5865, 9.0E-009, 3.0142, 0.400921, 6.4863, 7.8873. 1338.01)

NO 9 = ( 1.5663, 8.8£E-009, 3.0181, 0.402276. 6.5211, ?7.9688. 135.94)

NO 10 = ( 1.5550, S.1E-009, 3.0353, 0.400507» £.6140s 7.9577, 130.38)

e S i




PROBLEM NO 7-%
SOLUTION ¢
0.24548S,

STARTING POINTS @
NO I = ( 0.283507,
NO 2 = ( 0.282461,
NO 3 = ( 0.275239,
NO 4 = ( 0.286742,
NO 5 = ¢ 0.301457,
NO & = ( 0.293384,
NO 7 = ( 0.2394854,
NO 8 = ( 0.290556,
NO 9 = ( 0.312850,
NO 10 = ( 0.275708,

6.1970,

s L 8854 ’

S.9345,

7.4562»

6.2486,

7.0203,

7.1783,

6.45686,

5.6665,

$.9828,

7.6027,

8.2726,

39.2618,

9.0908,

S.0813,

9.2512,

8.0919,

8.1551,

9.5608,

9.2453,

8.2076,

8.0918,

0.245488,

0.287584,

0.320008,

0.278507,

0.301732,

0.304828,

0.301242,

0.2939750,

0.300622,

0.316598,

0.311877,

1.8E+008,

1.4E+008,

1.8E+008,

1.4E+008,

1.5E+003,

1.6E+008,

1.5E+008,

1.8€+008,

1.5E+008,

1.7E+008,

1.7E+008,

21.3393,

23.9525,

21.7321,

21.4388,

23.2965,

18.2918,

22.0897,

22.7052,

24.4893,

18.1277,

18.5721,

27.7408)

34.8307)

33.1972)

35.9301)»

34.4532)

32.9435)

33.0836)

35.0714)

32.5330)

28.1352)

32.4813)

S G-
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PROBLEM NO 7-2
SOLUTION @

( 0.24548S, 6.1S70, 8.2726» 0.245488, 1.8E+008, 21.3393, 27.7408)
STARTING POINTS :

NO | 6.261432, 6.0822, 8.9636» 0.265791,» 1.7E+008, 22.2948, 30.6096)

']
~

NO 2 = ( 0.261337, 6.8330, B.2467» 0.262402, 1.7E+008, 20.9365, 30.3124)
NO 3 = ( 0.254943, 6.5314, 8.6373, 0.270583, 1.8E+008, 21.7892, 30.7604)
NO 4 = ( 0.263330, 6.1633, 8.3471,» 0.274898, 1.8E+008, 21.4009, 30.2702)
NO S = ( 0.267137, 6.3108, 8.4364, 0.269286, 1.8E+008, 21.9383, 30.9559) ‘
NO 6 = ( 0.240239, 6.3362, 8.7328, 0.271734, 1.8E+008, 22.7511, 30.5737) ' ‘
NO 7 = ( 0.261711, B6.3810. 8.5819. 0.266452» 1.7E+008, 22.9564, 30.0083) l
NO 8 = ( 0.264054, S5.9783, 8.7974, 0.268570, 1.BE+008, 22.2546, 30.6400)

NO 8 = ( 0.257028, 6.0372, 8.6365, 0.273977, 1.8E+008, 22.2574, 30.2022)
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PROBLEM NO 8-2
SOLUTION 3

( 1699.01, 53.3569, 3031.94, S0.0714, 95.0000, 10.5456, 153.53)

STARTING POINTS :

NO 1 = ( 1530.54, S2.6886, 2708.00, S0.1608, 95.0000. 11.5003, 153.42)

NO 2 = ( 1538.12, S5.7571., 2702.05, 90.1291, 95.0000, 11.4783, 153.38)




PROBLEM NO 8-1
SOLUTION 3
( 6.4810,

STARTING POINTS :
NO 1 = ( 5.0175,
NO 2= ( 5.1677»
NO 3 = ( 5.0117,
NO 4 = ( 4.3080,
NO 5 = ( 5.4415,
NO 8 = ( 5.5488,
NO 7 = ( 4.8749,
N0 8 = ( 5.5205,
NO 9 = ( 6.2818,
NO 10 = ( 4.8394,

2.2175,

2.1079,

2.0075,

1.7069,

1.9720,

2.0320,

2.5601,

2.1847,

1.8535,

2.2707

1.83952,

0.656969,

0.799084,

0.6738073,»

0.658526,

0.558054,

0.796953,

0.629372,

0.814435,

0.533308»

0.734797,

0.608771,

0.595832,

0.502201.

0.515244.

0.633554,

0.546640,

0.623089,

0.717721,

0.516258,

0.577560

0.531583»

0.4439090+

5.9300.

6.0199,

6.0351,

5.9508,

510914'

6.017S,

5.8717,

6.0583,

€.0660,

6.0387,

6.0878,

5.5271,

6.6925,

6.7144,

6.2398,

S.8d12,

6.1605,

6.5761,

6.4503,

6.4712,

7.0198,

5.9106,

1.0082, 0.400467)

0.8947077,

0.988460,

0.814804,

0.388499)

0.302427)

0.384846)

1.0248, 0.405226)

0.788410,

0.856932,

0.924717,

0.797346,

0.814831,

0.976795,

0.317377)

0.476052)

0.377815)

0.376559)

0.340567)

0.465350)
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PROBLEM NO S-2
SOLUTION @
( 6.4810»
STARTING POINTS @
1 = ( 5.9530,
2 = ( 5.9900,

3 = ( 6.3227»

NO
NO
NO
ND 4 = ( 5.8526,
N S = ( 5.9683,
NO 6 = ( 6.3375,
NO 7 = ( 5.8909,
NO 8 = ( 6.3208,

NO 9 = ( 5.9226,

5.9127,

3
—
o
]
~

2. 2175'

2. 1752!

2.3890,

2.1131»

1.9803»

2.1781,

2.1392»

2.2052,

2.0758,

2.1770,

2.1614,

0.666969,

0.717996,

0.705763,

0.605508,

0.663048,

0.616980,

0.72187S,

0.722532,

0.614925,

0.705116,

0.659351,

0.595832,

0.559669,

0.536767,

0.595316,

0.613354,

0.546314,

0.60734G

0.5658€2,

0.588718,

0.560157,

0.520887,

$.8300,

6.3725,

6.0274,

6.0218,

6.2914,

6.331¢&,

6.4628,

6.4523,

6.4829,

6.0754,

6.1542,

5.5271,

5.9772»

S5.9755,

6.08399,

5.8582,

5.5302,

5.7947,

5.8748,

5.8947,

6.0701,

5.9899,

1.0092, 0.400457)

1.0434, 0.335845)

1.0128, 0.380027)

0.856342, 0.433144)

0.2403s6,» 0.333211)

0.846361,» 0.369038)

0.941621,» 0.365370)

1.0307, 0.391336)

0.840173. 0.331158)

1.0236, 0.432864)

1.0288, 0.338622)




PROBLEM NO 10-1

SOLUTION @

574.80,

STARTING POINTS

ra

2 2 3 8 & 8 3 3 &

-
o

1

2

752.99,

722.53»

653.54,

762. 12

718.71,

607.48,

721.04,

574.56,

713.87,

626.34,

1364.79,

1505.55,

1608.63»

1642.10,

1477.24,

1682.31,

1771.52,

1665.43,

1488.15,

1604.23,

1832.32s

5109.67,

6004.25,

6404.44,

6933.35,

5676.54»

5665.41,

6480.63»

5920.24,

7223.82,

6529.52,

5447.06,

181-“'

176.15,
177.75
177.08,
178.51,
183.33,
180.75,
184.57,
174.92,
181.80,

176.70,

235.81-

293.34,

294.16,

289.47,

286.90,

287.65,

296.77,

289.94,

285.22,

293.31,

297.20,

218.36,

213.30,

215.74,

218.23»

212.83»

215.74,

213.89

211.37,

218.26»

215.04,

218.86,

288'03.

280.07,

283.48,

287.37,

287.83,

277.43,

279.22

285.03,

281.65,

280.98,

277.06,

395.61)

386.04)

392.55)

389.26)

380.93)

384.99)

383.08)

389.68)

372.07)

387.37)

3%6.77)
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PROBLEM NO 10-2

SOLUTION @

( 574.80, 1364.79, 5109.67»

STARTING POINTS ¢
NO 1 = ( 639.47,
NO 2 = ( 576.88,

NO 3 = ( 670.75,

1433-87'

1520.40,

1351.61,

5419.32,

5880.29,

5478.78»

181.64,

172.71,

1?9- 19’

177.81,

295.61, 218.36, 286.03, 395.61)

291.18,

295.23,

291.76,

227.28,

218.76,

217.86

281.24

280.89,

285.41,

383.69)

392.41)

387.53)
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PROBLEM NO 11-1

SOLUTION

(

30.0000,

STARTING POINTS ¢

NO 1= (

NO

3

29.9046,
29.9889,
29.8050,
29.7289,
29.9195,
29.9138,
29.5380,
29.7658,
29,7938,

29.8622,

20.0000,

20.4201,
20.1453,
20.6638»
20.6271,
20.0826,
20.3698,
20.5802,
20.4716,
éO.BSOU-

20.5159,

1.000000,

0.813318,

0.706576,

0.780375,

0.831167,

0.74?7964,

0.784867,

0.755409,

0.843403,

0.8550339,

0.977180C,

0.416339,

0.3763984,

0.356304,

0.336272,

0.362491,

0.325360,

0.281819,

0.517750,

0.358561,

0.327134,

0.332574,

8.043S,

7.5564,

7.44395,

7.8523,

8.7355,

7.5908,

8.9610,

7.3934,

7.7600,

9.8411,

9.4582,

S.2292,

SQSI?EI

SOOISOO

6.1912,

508468'

S.7924,

5.8803,

5. 0894'

6.4206,

5.6459,

6.1633,

7.3894'

7.8453,

7.9648,

7.9352,

7.9139,

7.9065,

7.7622,

7.7616,

7.9081,

7.8052,

7.86014,

5.5498)

6.5153)

6.0155)

6.3889)

6.1502)

6.5143)

6.0680)

6.0825)

6.6864)

8.8423)

6.8010)
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PROBLEM NO 11-2

. SOLUTION

" STARTING

NO 1 =(

NO 2= (
NO 3= (
NO 4 = (

NO S =(

NO 8 = (
NO 8 =(

NO 10 = (

30.0000,

POINTS ¢

29.9203,

23.39094,

29.8662,

29.9041,

29.8336,

29.9135,

29.8816,

29.8885

29.9241,

29.8997,

20.0000,

20.1512s

20.1417,

20.2234,

20.2446,

20.1162,

20.0894,

20.1310,

20.1157,

20,0952,

20.1858,

1.000000,

0.910265,

0.345025,

0.917054,

0.931i523,

0.891552,

0.902309,

0.946223,

0.886221,

0.925786»

0.935117,

0.416339,

0.383525,
0.410218,
0.416298,
0.424867,
0.394534,
0.362024,
0.376730,
0.41756S,
0.442552,

0.434939,

8.0435,

7.9654,

7.6388s

7.5987,

8.0743,

7.9113,

3.3745,

8.2800,

8.3800,

7.68010,

8.8731,

5.2292,

5.6222»

5.6910,

5.3888,

5.8155,

5.2899,

5.4473,

S.7187,

5.4367,

5.62793,

5.4002,

7.6894,

7.7838,

7.6786»

7.6858,

7.7883,

7?.7587,

7.6946,

7.7494,

7.7190,

7.7067

7.6871,

5.5488)

5.8326)

6.0823)

6.1646)

5.8727)

6.0457)

5.6693)

S.9177)

5.9210)

6.0058)

6.03842)
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PROBLEM NO 12-1

SOLUTION @
( 17.8264, 1.0E-008, 1.2323, 3.2032, 40.0000, 0.987081, 24.6453, 6.6670, B8.0000) 4
STARTING POINTS :

NO 1 = ( i7.7765, 8.BE-009, 1.6432,» 3.0061, 40.0157,» 0.960220, 24.3516, 6.4257, 7.8299)

S




PROBLEM ND 12-2

SOLUTION

STARTING

NO 1

n
~

NO 2= (

NO 3 =¢(

NO 4 = (

NO 5 = (

NO 6 =(

NO 7 =(

NO 8 = (

NO 9 =(

NO 10 = (

17.8264,

POINTS @

19.2499,

19.4109,

15,5246,

19,6469,

19.6378»

19,9444,

19.8493,

19.4276,

18.5611,

19.7258,

1.0E-008,

1.1E-008,

9. 1E-008,

1.0E-008,

9.9E-009,

9.5E-009,

9.6E-009,

38.7E-009,

1.0E-008,

1.1E-003,

9.0E-009,

1.2323,

1 L4 348?’

1.3051,

1.3417,

1.3314,

1.3041,

1.2255,

1.3270,

1.3514,

1.3400,

1.2382,

3.2032,

3.0886,

3.0154,

3.0063,

3.0181,

3.0043,

3.0115,

3.0711,

3.0248,

3.0880,

3.0203,

40.0000,

40.0116

40.1442,

40.2178,

40.0262»

40.6374,

40.3502,

40.1777,

40.1484,

40.3801,

40.1158,

0.987081,

0.8395226,

0.973916,

0.987671,

0.896480,

0.385578,

0.982768,

0.884030,

0.890211,

0.977231,

0.980227,

24.6453,

24.8031,

24,8986,

24.6850,

24.6479,

25.0366,

26,3216,

24.47086,

24.6132,

24.7013,

24.3241,

6.6670,

6.6263,

6.5824,

6.6064,

6.5715,

6.8337,

6.5634;

6.6130,

6.6053,

6.5662,

6.6254,

138

8.17000)

7.9837)

7.9309)

7.9412)

7.9927)

7.93530)

7.9169)

7.96394)

7.9859)

7.9886)

7.9711)

VUSSR
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PROBLEM NO 13-1
SOLUTION
( S57.6923, 34.1476+ 57.6923, 1.0500, 104.19, 46.5010, 32.8923s 46.5010, 30.5203}

' STARTING POINTS :

NO 1 = ( 58.9067, 32.9226, S56.5912» 1.3583, 87.7983, 45.6421, 32.0687, 47.9642, 31.5034)
NO @2 = ( 58.5523, 34.4512, 57.1795, 1.1811, 70.3982, 45.0163, 32.5326, 48.2006, 31.0288)
NO 3 = ( 59.8054, 36.0838, S57.6802s» 1.340S5, 94.0966, 43.6916, 32.4197, 47.1088, 31.4522)
<NU 4 = ( 59.8708, 33.1053» 56.4510, 1.3407, 84.0568., 45,3695, 33.351i, 46.7462, 31.1486)
NO 5= ¢ 58.9144. 33.5194, 57.3664, 1.3662, 84.3073, 45.7239, 32.6248, 46.6473, 31.3681)
NO 6 = ( S57.2811, 33.8340, 56.60.7» 1.3570, 84.8876, 44,7901, 31.7143, 45.5124, 30.3585)
NO 7 = ( 59.8326, 33.8312, 56.9527. 1.3877, 393.8653, 45.1650, 31.3129+ 46.4089, 30.8233)

8 = ( 59.3187, 35.2483, 59.5257» 1.2108, 74.1607, 47.8050., 31.8593. 48.0410, 31.0029

NO 8 = ( 55.7180, 33.3708s 57.7023» 1.4078, 99.7801, 46.0123,» 31.7312,» 47.9576, 31.1371)

NO 10 = ¢ 58.1089, 33.1897, 55.94399, 1.3361, 83.0471, 44,8333, 31,9253, 45.6980, 30.8671)




PROBLEM NO 13-2

SOLUTION :

( 57.6923,

STARTING POINTS :

NO

NO

NO

ND

NO

NO

1

NO 10

{ 56.6722

= ( 57.83992,

( S6.2808-

{ S7.2510,

( 57.5982,

( 57.3298,

( 58.8431,

( 57.7223,

( 57.9579,

( 57.3232»

34.1476,

35.7528,

35.6660,

36.0506,

35.4277,

33.8818»

34.1492,

35.2363,

34.4269,

33.9261,

34.2833,

57.6923,

58.4363,
58.1578s
58.4708,
58.3429,
58.7557,
S57.5 11,
58.9637»
57.8394,
57.7951,

58.4439,

1.0500,

1.1143,

1.1807,

1.1032s

1.1429,

1.1403,

1.1715

1.1575,

1.2015,

1.1566,

1.1S114,

140

104.19, 46.5010, 32.6923s» 46.5010, 30.5203)

94.1526, 46.0833, 32.0307, 48.0737,» 30.7377)
103.21s 45.7836,» 32.5498, 48.5147, 30.8722)
94.94Sb- 46.0082, 32.0995, 48.3862» 30.6385)
100.82s 45,7811, 31.7561, 47.6668, 31.3719)
9%.7653, 47.2408, 32.1105, 48.6787, 30.8854)
96.0602, 46.3063, 32.4609, 48.21381, 30.79S8)
99.0493, 45.7137, 32.8700, 47.3196, 30.89586)
102.84, 46,2782, 32.7084, 47.2173, 30.8242)
93.5229, 46.1033, 32.7807, 46.856S, 30.8175)

394.5383, 47.0958, 32.4643, 48.2202, 30.7881)

¥




PROBLEM NO 14-1

SOLUTION 3

11.7660,

STARTING POINTS ¢

NO 4 =(

NO 6 = (

NO 8 =(

NO 10 = (

11.6031,

11.5949,

11.5315,

11.8989,

11.8169,

1108754'

11.6030,

11.8438,

11.8091,

11.8944,

0.371346,

0.272973,

0.303689,

0.293268,

0.273110,

0.346776,

0.256354,

0.317193,

0.301142,

0.308244,

0.2744392,

0.342312,

0.400766,

0.37726S,

0.407190,

0.362774,

0.418303,

0.353487,

0.406245,»

0.373331,

0.421226,

0.407373,

12.2734,

12.5913,

11.999s,

12.460S,

12,3646,

12,1494,

12,1755,

12.2783,

12.2411,

12,5948,

12.3616,

14.23449

14,3238,
13.7886,
13.8009,
13.7709,
13.7972,
14.0045,
14.5157,
14.0348,
14,2612,

13.8607,

0.400000,

0.418139,

0.425037,

0.405423,

0.403951,

0.416651,

0.411820,

0.400389,

0.40803S,

0.400001,

0.407148,

38,3594,

41.5308,

45.63996,

41.2724,

46.4365,

47 .8849,

44,8322,

48.9057,

49.7014,

46.53934,

43.8402,

0.7196856,

0.732878,

0.757215,

0.7663394,

0.744475S,

0.738932,

0.731053,

0.728756»

0.736232,

0.721742,

0.737737,
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0.130695)

0.137098)

0.136657)

0.138342)

0.134899)

0.1336€8)

0.133870)

0.132975)

0.132025)

0.134824)

0.1333902)

it




\
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PROBLEM NO 14-2
SOLUTION :
{ ( 11.7660,

STARTING POINTS :

NO 1= 11.8202,
NO 2 = ( 11.5267,
NO 3 = ( 11.6222,
N0 4 = ( 11.5630,

0.371346,

0.331271%,

0.3644683,

0.3439662,

0.346663»

0.342312,

0.350859,

0.385829,

0.350410,

0.361218»

12.2734,

12.3106»

12.2366,

12.2958,

12.3157,

14.2344,

14,1010,

14.32e26,

14,3614,

14,3286,

0.400000,

0.401612,

0.404812,

0.402612,

0.40053€,

38.3554,

41.6544,

40.2729,

43.1436,

42.0408,

0.715656,

0.723780,

0.725684,

0.722622y

0.733716:

142

0.130695)

0.132410)

0.132428)

0.132648)

0.133581)

ettt it

.
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PROBLEM NO 15-1

- SOLUTION s
¢ 0.724310,
0.298522)

STARTING POINTS :

NO 1 = ( 0.885143,
0.306945)
NO 2 = ( 0.847967,
0.302331)
NO 3 = ( 0.811277,
0.306958)
NO 4 = ( 0.782414,
0.299525)
NO S = ( 0.856169,
0.304918)
NO 6 = ( 0.826233,
0.302780)
ND 7 = ( 0.339807,
0.306165)
NO 8 = ( 0.925514,
0.301411)
NO 9 = ( 0.867507,
0.302967)
NO 10 = ( 0.847150,

0.310303)

0.723675»

0.898727,

0.825640,

0.868714,

0.866258,

0.876012,

0.828637,

0.82446S3,

0.736728»

0.886304,

0.879610,

0.724185S,

0.701987,

0.825330,

0.868784,

0.526057,

0.£80297,

0.835552,

0.813875,

0.885658»

0.852750,

0.878932,

0.257577»

0.251369

0.253377

0.252688,

0.254303,

0.253728,

0.24980S,

0.253083,

0.251061,

0.2585399,

0.253062,

0.177137»

0.173597,

0.171897,

0.173085,

0.180736,

0.180010»

0.174911,

0.176404,

0.174433,

0.177316,

0.174458,

0.121792,

0.125460,

0.121671,

0.120379,

0.118876,

0.123228,

0.121709,

0.123863,

0.124138

0.122037

0.113477,

0.205240,

0.203351,

0.202682,

0.210527,

0.211617,

0.204776,

0.210384,

0.204186,

0.201883,

0.210377,

0.209721,

0.141145,

0.144152,

0.141248,

0.140165,

0.144361,

0.144632,

0.140583,

0.145098,

0.142942,

0.143764,

0.139915,

0.09704S,

0 . 10?233'

0.102263,

0.113611,

0.096973,

0.103387,

0.097922,

0.102201,

0.099368,

0.102638,

0.098055,



SOLUTION

STARTING

N 1 =(

NO B = (

NO 10 = ¢

PROBLEM NO 15-2

0.724310,
0.298522»

POINTS :

0.800602,
0.302040)

0.798166,
0.301148)

0.810508,
0.301150)

0.794393,
0.302097)

0.821053,
0.301217)

0.808189,
0.300627)

0.8044339,
0.302036)

0.806478,
0.300608)

0.801483,
0.302012)

0.807950,
0.302398€)

0.723675,

0.795185,

0.798868,

0.775783,

0.810902,

0.7839757,

0.775342,

0.757050,

0.80688394,

0.810308,

0.7339402,

0.72418S,

0.716508,

0.747273,

0.777489,

0.652504,

0.766432,»

0.748325,

0.730558,

0.743752,

0.675563,

0.812145,

0.257577»

0.249655,

0.241045,

0.250296,

0.258428,

0.253334,

0.238810,

0.257872,

0.233014,

0.255067,

0.250976,

0.177137,»

0.173970.

0.166837,

0.185424,

0.174113,

0.172824,

0.170457,

0.173470,

0.173142,

0.1639238,

0.175483,

0.121792,

0.112553,

0.1208657,

0.116225,

0.123130,

0.114374,

0.114323,

0.111330y

0.117592,

0.118907,

0.120921,

0.205240,

0.204009,

0.206634,

0.204962,

0.206741,

0.2073392,

0.2061S5S,

0.205357,

0.204745,

0.204216,

0.204556,

144

0.14114S,

0.140455,

0.141993,

0.142273,

0.140477,

0.142241.,

0.141290,

0.142077,

0.140699,

0.141145,

0.140637.

0.09704S,

0.101273,

0.100567,

0.098811,

0.101210,

0.098591,

0.089063»

0.038405,

0.09707S,

0.101231,

0.1032¢6.




PROBLEM NO 16-1

~ SOLUTION

STARTING

NG &= ¢(

NO 10 = (

2.0952, 12.0952,
0.100000)

POINTS @

2.1540, 11.8235,
0.093980)

2.1645, 11.9773,
0.036613)

2.1436, 12,0699,
0.098819)

2.0679, 11.9307»
0.097010)

~

2.0824, 12.0195,
0.093657)

2.0794, 11.8641,
0.096622)

2.0765, 11.9925,
0.096762)

2.0733, 11.8203,
0.099188)

2.0987, 11.9102,
0.098671)

2.1205, 11.8343,
0.098102)

7.9048,

8.0440,

7.8813,

7.9221,

v.9958,

7.9573,

8.0008,

7.8853,

8.1261,

7.9132,

7.9855,

0.459381,

0.540846,

0.583513,

0.509337,

0.591323,

0.566162,

0.577907,

0.531599,

0.584185,

0.584064.

0.541232,

0.357935,

0.339613,

0.358778,

0.321325,

0.388459,

0.410826,

0.3385334,

0.403974,

0.440265,

0.433543,

0.3088€E8B,

0.454747,

0.516851,

0.532515S,

0.605544,

0.5133%07,

0.514167,

0.444950,

0.534048,

0.517903,

0.493334,

0.536208,

10.4547,

10.1317,

10-1133'

10.1927,

10.1137,

10.2230,

10.1410.

10.1633,

10,1416,

10.2393,

10.1381,

1.640S,

1.57131,

1-5525;

1.6796,

1.6302,

1.6522,

1.6544,

1.6614,

1.66GS,

1.6170,

1.5882,

14

1.187S,

1.5143,

1.3498,

1.2208,

1 . 352?'

1.4671,

1.4676,

1.2611,

1 . 2429’

1.39198,

1.4648,

5




PROBLEM NO 16-2

- SOLUTION ¢

( 2.0952, 12.0952, 7.9048, 0.453381, 0.357935, 0.454747, 10.4547,» 1.6405, 1.197S,
0.100000)

STARTING POINTS @

NO 1 = (2.0830, 12.0183, 7.9331,» 0.488574, 0.39203%, 0.475835, 10.3626, 1.6272, 1.3236»

0.097835)

NO 2= ( 2.1251, 11.9678, 7.9687,» 0.512452, 0.342468, 0.498969, 10.3244,» 1.6421s 1.2376»
0.097533) . 4

NO 3= (2.1117, 12.0705, 7.9008, 0.492736, 0,335943, 0.502185, 10.3660» 1.6579, 1,2464,
0.094423)

MO 4 = ( 2.1017, 12.0165, 7.9515, 0.515554, 0.395673, 0.474221, 10.3099, 1.6422, 1.2777,»
0.0383881)

NO S5 = ( 2.1068, 12.0463, 7.9424, 0.4839870, 0,367188, 0.4390971, 10.3794, 1.6272, 1.2956,
0.082790)




PROBLEM NO 17-1

| SOLUTION @
| ¢ 0.7310S5,
3
| 0.294659)
STARTING POINTS @
NO 1 = C 0.893386,
0.302972)
NO 2 = ( 0.855864,
0.298477)
NO 3 = C 0.818833,
0.302985)
NO 4 = ( 0.789701,
0.295648)
NO S = ( 0.864143,
0.300971)
NO 6 = ( 0.833928,
0.298861)
NO 7 = ( 0.848560,
0.302202)
NO 8 = ( 0.934134,
0.297510)
NO 9 = ( 0.875586,
0.239046)
NO 10 = ( 0.855040,

0.306287)

0.712511,

0.884862,

0.911360,

0.855313»

0.852895,

0.862497,

0.815854,

0.811750,

0.725362,

0.882477,

0.868040,

0.702707,

0.681166,

0.800852,

0.843017,

0.898591,

0.854188,

0.507804,

0.783736,

0.859330,

0.827458,

0.852864,

0.265162,

0.258771,

0.260838,

0.260129,

0.261792»

0.261271»

0.257161»

0.260536,

0.258454,

0.266214,

0.260514.,

0.182000,

0.178363,

0.1766.6s

0.177837,

0.1856898,

0.184352,

0.179713,

0.1812486,

0.179222,

0.182184,

0.173248,

0.124031,

0.127766,

0.123908,

0.122532,

0.121061,

0.125493,

0.123946,

0.126140,

0.126420.

0.124280,

0.121674.

0.197735,

0.195315,

0.185271,

0.202829,

0.203879,

0.1397288,

0.203263,

0.196730,

0.194501,

0.202684,

1.202053,

147

0.132896,

0.135728,

0.132994,

0.131974,

0.135924,

0.136180,

0.132367»

0.13€618»

0.134589,

0.135362,

0.131739,

0.089318,

0.098694,

0.094126,

0.104564,

0.083251,

0.095155,

0.09012S,

0.094064,

0.091456,

0.094465.

0.080247,




PROBLEM NO 17-2

SOLUTION ¢

( 0.7310S5,
0.294653)

STARTING POINTS :

NO 1 = ( 0.808058,

NO

NO

NO

NO

10

0.298131)

( 0.805593,
0.297250)

( 0.818056,
0.297252)

( 0.786672,
0.296316)

( 0.801792,
0.298187)

( 0.828705,
0.297319)

¢ 0.815716,
0.296736)

( 0.E46754,
0.2385850)

¢ 0.811994,
0.298127)

( 0.813389,
0.296717)

0.712511,

0.782328,

0.786544,

0.763815,»

0.791415,

0.73983<2,

0.777574,

0.763381,

0.736165,

0.745371,

0.7394446,

0.702707,

0.724368,

0.725103,

0.754423,

0.7819339,

0.633151,

0.743701,

0.724190,

0.701488,

0.767111,

0.721634,

0.365162,

0.257006,

0.248143,

0.257667,

0.254536,

0.266038,

0.260734,

0.245842,

0.248112,

0.z..5466,

0.246052,

0.182000,

0.178746,

0.171418,

0.16399E6,

0.17552s,

0.178833,»

0.177569,

0.175136,

0.172053,

0.178232»

0.17783S.

0.124031,

0.114528,

0.12287S,

0.118361,

0.123532,

0.1253383,

0.116986,

0.116431,

0.119138,

0.113377,

0.119753,

0.19773%,

0.196549,

0. 193078,

0.197467,

0.196299,

0.193181,

0.1838809,

0.198516,

0.196054,

0.1398426.

0.197258.

148

0.132898,

0.132246,

0.133700,

0.133958,

0.134643,

0.132268,

0.133928,

0.133033,

0.131068,

0.133774,

0. 132476,

0.089318

0.093209-

0.092558.

0.090943,

0.081808.

0.0383152,

0.090741.

0.091178,

0.081556,

0.081490,.

0.0838345,




PROBLEM NO 18-3

SOLUTION ¢

( 1766.29, 18676., 95.9866, 3085.58, 1999.42, 92.0220, 95.0000, 11.7051. 2.0422,
152.15)

STARTING POINTS :

MO 1 = ( 1783.14, 18031., 98.0549, 2931.33, 1909.74, S2.00682, 94.9048, 11.6694, 2.0801,
152.89) !

‘NO 2= ( I781.02, 18653.,» 100.87, 2937.52, 1952.36, 92.0205, 94.8560, 11.1183, 2.0304, 31
152.93) i

——— _,ﬁ*. e e e
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PROBLEM NO 18-1

SOLUTION ¢ ) i

¢ 0.804085, 0.899972, 0.991282, 0.100000, 0.180423, 0.300000, S38.84, 36.9856, 500.00,
0.100000)

STARTING POINTS @

NO 1 = C 0.797310,» 0.S00011, 0.920693,» 0.098460, 0.193580, 0.882403, 440.21,» 44.6834, 599.85,
0.111278)

¥
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PROBLEM NO 19-2
SOLUTION @

( 0.804085, 0.899972, 0.8391282, 0.100000, 0.190423, 0.900000, S53B.84, 36.3866, 500.00,
0.100000)

STARTING POINTS @

NO 1 = ( 0.80137S, 0.839987, 0.963049, 0.099384, 0.181686, 0.892961, 499.33, 40.0653, 539.94,
0.104511)

NO 2 = ( 0.796880, 0.900433, 0.935813, 0.0399710, 0.192626, 0.895081, S08.11, 40.8669, 526.53,

e

0.105350)

NO 3 = ( 0.801537, 0.900152,» 0.3914192, 0.099522, 0.130839s 0.835719, 4838.77, 37.8526, S521.81,
i 0.108639)

NO 4 = ( 0.796544, 0.900126, 0.929714, 0.09300S, 0.130821, 0.831303, 484.00, 38.2368, 535.02, '<
0.104370)

NO 5 = ( 0.799779, 0.800187, 0.507476, 0.099255, 0.191440, 0.898318, 494.82, 38.4526,» 537.72,

0.105919)
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PROBLEM NO 20-3
SOLUTION ¢

( 7.0037, 7.6458, 7.3183, 0.012445, 0.811659, 0.855586,» 0.381392, 0.3580390, 0.352934,
2.0764, 0.4523995)

STARTING POINTS ¢

NO 1 = ( 6.9661, 7,6257, 7.0708, 0.0i12733, 0.807539, 0.954640,» 0.379406, 0.379690, 0.354385,
2.0791, 0.452616)




PROBLEM NO 21-3

SOLUTION

STARTING

NO 1= ¢(

0.332000,

1.3800,

POINTS :

0.392174,
1.3784,

2.3800,

2.3779,

0.084000,

0.084083,

0.123000,

0.118818,

1.0E-00S, 0.481000,

0.335000)

9.9e~-008, 0.483292,

0.317082)

0.643000,

0.638443,

0.025132,

0.025015,

0.007000,

0.006301,

153

0.022006,

0.021984,

0.553037,

0.529723,
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PROBLEM NO 22-2
: SOLUTION 3

¢ 13115., 38471., 3212.00, 112.19, 370699.,» 31.5088, 1.1E-008, 47399., 146959.,
' 7794.88, 19327., 362648.» 14563.)

STARTING POINTS ¢

NO 1 = ( 11899., 40037., 2918.34, 113.33, 374387., 33.0766, 1.1E-008, 46201., 147286.,
7770.63, 19823., 362820., 14539.)

N0 2 = ( 12774., 4009S., 3368.11s 113.19, 378852., 34.7106» 1.1E-008, 44339., 147742.,
7807.66, 19729., 366445.,» 14446.)

.-
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PROBLEM NO 23-1

SOLUTION *

¢

$154.08,

STARTING POINTS :

8403- 17,

$806. 06,

6811.50,

50 15 . 05'

59430 29'

§531.11,

6“00071

6123.78,

€110.92,

8384-59'

6.6200,

8082549

6.7472»

6.6364,

6.5385!

805904’

6.7031,

€.6350,

5. 5385'

3.7922-

6.5230,

189485.'

16898S.,

168289.,

171127.»

169885, ,

165565.

172647.,

1711186.,

17290€.,

16773S.,

166074.,

743.89,

887.58'

921 . 18'

890.93,

858.?5'

885. 98-

794.10,

814.59,

358.28;

784.07,

87999., 189.54, 0.125831, 29.2653)

79862., 223.87, 0.104181; 28.9273)
81850., 206.44s 0.095633, 29.7279)
78086., 222.21,» 0.118323, 29.6090)
108247., 242.42, 0.122487, 2B.33439)
103255., 235.82,» 0.117769, 29.8528)
73258., 236.82, 0.105344, 28.9416)
103261., 237.98, 0.102908, 28.8511)
98530.,» 229.34, 0.096418, 29.2088)
98339., 233.35, 0.106042, 28.5788)

108436., 227.84, 0.103923, 29.2060)




PROBLEM NO 23-2

SOLUTION @

¢ 5154.08,

STARTING POINTS 3

1 = ( 5590.88,

( 5880.28,

( $703.28,

( 5213.21,

( 5492. 500

3661.00,

( 5768.39,

( 5618.18,

( 5602.61,

(o3

o (" ] [ ] ~ [ ] [ ] » w n

[ ] [ ] L] ] [ ] ] [ ] [ ] ]
”~

( 5635.48,

-

5.5770’

3.58970

6.6090,

s. 7165.

€.6125,

8.6137,

6.7064,

6.5511,

16““. ’

159895. ’

169765.,

17684. 14

1713910 .

180108..

168486.,

169203.,

178747.,

131492. .

168006.

?‘31“'

m' 15'

707.70,

804 . a?.

mo 3‘.

818.79,

823.11,

795.94,

780.37,

96443.,

97051.,

95168..,

88300-'

81416.,

31094.0

87094.,

;‘; 054'

213. Eh

202.92,

211.25,

201.12,

200.74,

187.91,

201.67»

1870420

198. 7‘!

208.71,

0. 125“1'

0.121369,

0.116128,

0.122959,

0.111734»

0.125415,

0.113152,

0.120203,

0.116461,

0.117106.

0- 1‘3898'

29.2653)

29.5905)

2%.2390)

29.4826)

29.5802)

28.8854)

268.8940)

29.2225)

29.4211)

29.0618)

29.4058)
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SOLUTION 3

¢ 0.804030. 0.901863, 0.997200, 0.100000. 0.193638, 0.899993, 532.30, 72.8383, 500.00,
0.100001, 13.8948, 76.1710, 0.003497) i

STARTING POINTS s

N0 1= ( 0.800259, 0.800012,» 0.933849, 0.09332S, 0.193836, 0.883536, S532.30, 73.8278, 501.6S,
0.100182, 20.6268, 80.9022, 0.015613)

.N0 2 = ( 0.803022, 0.900686, 0.325804, 0.099558, 0.193080, 0.873287, S62.39, 72.6221, %01.86,
0.100089, 21.0665, 78.2407, 0.016072)
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x PROBLEM NO 23-1 -

SOLUTION @

¢ 679,40, 532.66+ 346.07» 435.55, 164.45, 1000.00(100.00. 1.0E-00S, 100.0000,
10959., 3502.59» 467.63, 1.0E-005, 1.05-005)

STARTING POINTS @

NO 1 = ( 666.44, S516.68» 346.74s 444.37, 151.64,» 906,60, 98.4436, 8.SE-006, 99.3388, .
13721.,» 3705.64, S512.85» B.2E-006s 1.1E-005) ‘

~-N0 2= ( 670.55, 524.52, 349.69, 423.67, 164.32, 973.69,» 96.8481, 7.SE-006, 99.7027,
12051., 4085.23, S67.92» 9.1E-006s 1.0E-005)

o

N0 3 = ( 667.97, 524.11, 349.70, 437.67,» 160.96, 794.11, 99.0721, 1.2E-005, 99.8687» :
12198., 4012.98, 480.44, 1.2€-005, B.4E-006) §

NO 4 = ( 666.17, 534.26, 336.41, 428.09, 168.70, 976.11, 98.6953, 9.SE-006, 98.7308,
12342.,» 3751.45, 574.89, 1.2E-00S5, 7.8E-006)

Eyrenuramgpapadl

N0 S = ( 668.07, 531.21, 339.13, 428.50, 164.61, 8€8.02, 98.0965, 1.2€-00S5, 9B.6388,
12497., 4304.11,» S04.70» 8.6E-006,» 1.1E~005)

FRpE—eer—rgergrry

N0 € = ( 666.14, 518.90, 336.79, 432.89, 142.93, 962.08, 97.4475, 1.1E-005, 98.6568,
12799., 3519.78, S26.08» 1.3E-00S, 1.2€-005)

N0 7 = ( 666.15, 520.44, 346.33, 424.97, 157.70, 870.94,» 97.4398, 9.6E-006, 99.8639,
= 1344S., 3957.99» 496.69» 7.9E-006» 1.1E-00S)




2» PROBLEM NO 28-2 .
SOLUTION ¢

( 679.40, 532.66» 345.07s 435.55,» 164.45, 1000.00. 100.00,
10959., 3502.59, 467.63, 1.0E-005, 1.0E-00%)

STARTING POINTS t

MO 1 = ¢ 676.31, 527.55,» 343.0S, 426.77, 162.95, 890.24, 99.3425,
11300.,» 3590.86, 509.72,» 1.0E-00S,» 9.8E-006)

-NO 2= ( 674.38, 530.26, 344,92, 411.45, 161.69, 990.23, 98.1455,
11971., 3692.86,» 499.60,» 9.8tE-006, 1.1E-00S)
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1.0E-00S, 100.0000,

9.4E-006, 99.8500,

1.1E-00S, 99.5782,




«>

<«

PROBLEM MO 26-3

( 0.803772, 0.817513. 0.900000» 0.900000, 0.800000, 0.100000, 0.107884, 0.190837, 0.190837,
OO‘WI 505.“0 5-1- 72.4752- 500.00. 5000000 1.05-005)

STARTING POINTS ¢

MO 1 = ( 0.774701, 0.802429, 0.888789, 0.899360, 0.901714, 0.099219, 0.107788, 0.1390048, 0.190172,
0.194380, 501.10,» 5.5035, 70.9103, 515.84, S500.66» 1.0E-006)

AR oPran i 2 T DO R



APPRNDIX C:
OPT:

GGP:

GPKTC:

QUADGP:

Code Parameters

EPSIS
EPSBD
EPS
CRIT

EPSCON
EPSCGP
EPSLP
EPSPN

EPSCON
EPSDO
BETA
BS

EPSCOV
EPSTOL
VELTOL
EPS
TOLCON
EPSEQ
EPSEQ
EPSVAR
GENTOL
RLOWR
RUPPER

EPS
EPSI
EPS2
EPS3
EPS4
RRR

10

-6
-4
-6
-4

10
10
10
10

-8
-6

10
10
]0"] ]
-4
-3
-2

10
10
10
1.0

-5
-3
-7
-3
-6
-6
-6
-3
-8
-1
+1

10
10
10
10
10
10
10
10
10
10
10

-6
-4
-4
-6
-4

10
10
10
10
10
10




